Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Overview

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018)

By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and Jingdong Wang.

This code is a implementation of the weakly-supervised semantic segmentation experiments in the paper DSRG. The code is developed based on the Caffe framework.

Introduction

Overview of DSRG Overview of the proposed approach. The Deep Seeded Region Growing module takes the seed cues and segmentation map as input to produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

License

DSRG is released under the MIT License (refer to the LICENSE file for details).

Citing DSRG

If you find DSRG useful in your research, please consider citing:

@inproceedings{huang2018dsrg,
    title={Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing},
    author={Huang, Zilong and Wang, Xinggang and Wang, Jiasi and Liu, Wenyu and Wang, Jingdong},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={7014--7023},
    year={2018}
}

Installing dependencies

  • Python packages:
      $ pip install -r python-dependencies.txt
  • caffe (deeplabv2 version): deeplabv2 caffe installation instructions are available at https://bitbucket.org/aquariusjay/deeplab-public-ver2. Note, you need to compile caffe with python wrapper and support for python layers. Then add the caffe python path into training/tools/findcaffe.py.

  • Fully connected CRF wrapper (requires the Eigen3 package).

      $ pip install CRF/

Training the DSRG model

  • Go into the training directory:
      $ cd training
      $ mkdir localization_cues
  • Download the initial VGG16 model pretrained on Imagenet and put it in training/ folder.

  • Download CAM seed and put it in training/localization_cues folder. We use CAM for localizing the foreground seed classes and utilize the saliency detection technology DRFI for localizing background seed. We provide the python interface to DRFI here for convenience if you want to generate the seed by yourself.

      $ cd training/experiment/seed_mc
      $ mkdir models
  • Set root_folder parameter in train-s.prototxt, train-f.prototxt and PASCAL_DIR in run-s.sh to the directory with PASCAL VOC 2012 images

  • Run:

      $ bash run.sh

The trained model will be created in models

Acknowledgment

This code is heavily borrowed from SEC.

Owner
Zilong Huang
HUSTer
Zilong Huang
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023