STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

Overview

STonKGs

Tests PyPI PyPI - Python Version PyPI - License Documentation Status DOI Code style: black

STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combines structured information from KGs with unstructured text data to learn joint representations. While we demonstrated STonKGs on a biomedical knowledge graph ( i.e., from INDRA), the model can be applied other domains. In the following sections we describe the scripts that are necessary to be run to train the model on any given dataset.

💪 Getting Started

Data Format

Since STonKGs is operating on both text and KG data, it's expected that the respective data files include columns for both modalities. More specifically, the expected data format is a pandas dataframe (or a pickled pandas dataframe for the pre-training script), in which each row is containing one text-triple pair. The following columns are expected:

  • source: Source node in the triple of a given text-triple pair
  • target: Target node in the triple of a given text-triple pair
  • evidence: Text of a given text-triple pair
  • (optional) class: Class label for a given text-triple pair in fine-tuning tasks (does not apply to the pre-training procedure)

Note that both source and target nodes are required to be in the Biological Expression Langauge (BEL) format, more specifically, they need to be contained in the INDRA KG. For more details on the BEL format, see for example the INDRA documentation for BEL processor and PyBEL.

Pre-training STonKGs

Once you have installed STonKGs as a Python package (see below), you can start training the STonKGs on your dataset by running:

$ python3 -m stonkgs.models.stonkgs_pretraining

The configuration of the model can be easily modified by altering the parameters of the pretrain_stonkgs method. The only required argument to be changed is PRETRAINING_PREPROCESSED_POSITIVE_DF_PATH, which should point to your dataset.

Downloading the pre-trained STonKGs model on the INDRA KG

We released the pre-trained STonKGs models on the INDRA KG for possible future adaptations, such as further pre-training on other KGs. Both STonKGs150k as well as STonKGs300k are accessible through Hugging Face's model hub.

The easiest way to download and initialize the pre-trained STonKGs model is to use the from_default_pretrained() class method (with STonKGs150k being the default):

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_default_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_default_pretrained()

Alternatively, since our code is based on Hugging Face's transformers package, the pre-trained model can be easily downloaded and initialized using the .from_pretrained() function:

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_pretrained(
    'stonkgs/stonkgs-150k',
)

Extracting Embeddings

The learned embeddings of the pre-trained STonKGs models (or your own STonKGs variants) can be extracted in two simple steps. First, a given dataset with text-triple pairs (a pandas DataFrame, see Data Format) needs to be preprocessed using the preprocess_file_for_embeddings function. Then, one can obtain the learned embeddings using the preprocessed data and the get_stonkgs_embeddings function:

import pandas as pd

from stonkgs import get_stonkgs_embeddings, preprocess_df_for_embeddings

# Generate some example data
# Note that the evidence sentences are typically longer than in this example data
rows = [
    [
        "p(HGNC:1748 ! CDH1)",
        "p(HGNC:2515 ! CTNND1)",
        "Some example sentence about CDH1 and CTNND1.",
    ],
    [
        "p(HGNC:6871 ! MAPK1)",
        "p(HGNC:6018 ! IL6)",
        "Another example about some interaction between MAPK and IL6.",
    ],
    [
        "p(HGNC:3229 ! EGF)",
        "p(HGNC:4066 ! GAB1)",
        "One last example in which Gab1 and EGF are mentioned.",
    ],
]
example_df = pd.DataFrame(rows, columns=["source", "target", "evidence"])

# 1. Preprocess the text-triple data for embedding extraction
preprocessed_df_for_embeddings = preprocess_df_for_embeddings(example_df)

# 2. Extract the embeddings 
embedding_df = get_stonkgs_embeddings(preprocessed_df_for_embeddings)

Fine-tuning STonKGs

The most straightforward way of fine-tuning STonKGs on the original six classfication tasks is to run the fine-tuning script (note that this script assumes that you have a mlflow logger specified, e.g. using the --logging_dir argument):

$ python3 -m stonkgs.models.stonkgs_finetuning

Moreover, using STonKGs for your own fine-tuning tasks (i.e., sequence classification tasks) in your own code is just as easy as initializing the pre-trained model:

from stonkgs import STonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
stonkgs_model_finetuning = STonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

Using STonKGs for Inference

You can generate new predictions for previously unseen text-triple pairs (as long as the nodes are contained in the INDRA KG) based on either 1) the fine-tuned models used for the benchmark or 2) your own fine-tuned models. In order to do that, you first need to load/initialize the fine-tuned model:

from stonkgs.api import get_species_model, infer

model = get_species_model()

# Next, you want to use that model on your dataframe (consisting of at least source, target
# and evidence columns, see **Data Format**) to generate the class probabilities for each
# text-triple pair belonging to each of the specified classes in the respective fine-tuning task:
example_data = ...

# See Extracting Embeddings for the initialization of the example data
# This returns both the raw (transformers) PredictionOutput as well as the class probabilities 
# for each text-triple pair
raw_results, probabilities = infer(model, example_data)

ProtSTonKGs

It is possible to download the extension of STonKGs, the pre-trained ProtSTonKGs model, and initialize it for further pre-training on text, KG and amino acid sequence data:

from stonkgs import ProtSTonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
protstonkgs_pretraining = ProtSTonKGsForPreTraining.from_pretrained(
    'stonkgs/protstonkgs',
)

Moreover, analogous to STonKGs, ProtSTonKGs can be used for fine-tuning sequence classification tasks as well:

from stonkgs import ProtSTonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
protstonkgs_model_finetuning = ProtSTonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

⬇️ Installation

The most recent release can be installed from PyPI with:

$ pip install stonkgs

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/stonkgs/stonkgs.git

To install in development mode, use the following:

$ git clone git+https://github.com/stonkgs/stonkgs.git
$ cd stonkgs
$ pip install -e .

Warning: Because stellargraph doesn't currently work on Python 3.9, this software can only be installed on Python 3.8.

Artifacts

The pre-trained models are hosted on HuggingFace The fine-tuned models are hosted on the STonKGs community page on Zenodo along with the other artifacts (node2vec embeddings, random walks, etc.)

Acknowledgements

⚖️ License

The code in this package is licensed under the MIT License.

📖 Citation

Balabin H., Hoyt C.T., Birkenbihl C., Gyori B.M., Bachman J.A., Komdaullil A.T., Plöger P.G., Hofmann-Apitius M., Domingo-Fernández D. STonKGs: A Sophisticated Transformer Trained on Biomedical Text and Knowledge Graphs (2021), bioRxiv, 2021.08.17.456616v1.

🎁 Support

This project has been supported by several organizations (in alphabetical order):

💰 Funding

This project has been funded by the following grants:

Funding Body Program Grant
DARPA Automating Scientific Knowledge Extraction (ASKE) HR00111990009

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ Development

The final section of the README is for if you want to get involved by making a code contribution.

Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses BumpVersion to switch the version number in the setup.cfg and src/stonkgs/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
Comments
  • Add default loading function

    Add default loading function

    This PR uses the top-level __init__.py to make imports a bit less verbose and adds a class method that wraps loading from huggingface's hub so users don't need so many constants

    opened by cthoyt 3
  • Add code for using fine-tuned models

    Add code for using fine-tuned models

    • [x] Upload fine-tuned models to Zenodo under CC 0 license each in their own record (@cthoyt)
      • [x] species (https://zenodo.org/record/5205530)
      • [x] location (https://zenodo.org/record/5205553)
      • [x] disease (https://zenodo.org/record/5205592)
      • [x] correct (multiclass; https://zenodo.org/record/5206139)
      • [x] correct (binary; https://zenodo.org/record/5205989)
      • [x] cell line (https://zenodo.org/record/5205915)
    • [x] Automate download of fine-tuned models with PyStow (@cthoyt; see example in 660920d, done in 5dfecde)
    • [x] Show how to load model into python object (@helena-balabin)
    • [x] Show how to make a prediction on a given text triple, similarly to the README example that's on the general pre-trained model (@helena-balabin)
    opened by cthoyt 2
  • Prepare code for black

    Prepare code for black

    black is an automatic code formatter and linter. After all of the flake8 hell, it's a solution we can use to automate most of the pain away. This PR prepares the project for applying black by updating the flake8 config (adding a specific ignore) and adding a tox environment for applying black itself.

    After accepting this PR, do two things in order:

    1. Uncomment the flake8-black plugin in the flake8 environment of the tox.ini
    2. Run tox -e lint
    opened by cthoyt 1
  • Stream, yo

    Stream, yo

    I got a sigkill from lack of memory when I did this on the full COVID19 emmaa model, so I'm switching everything over to iterables and streams rather than building up full pandas dataframes each time.

    opened by cthoyt 0
  • Improve label to identifier mapping

    Improve label to identifier mapping

    Make sure that during inference, the predictions are correctly mapped to any kind of class labels when saving the dataframe. (This requires accessing/saving the id2tag attribute in each of the fine-tuning model classes.)

    opened by helena-balabin 0
Releases(v0.1.5)
Owner
STonKGs
Multimodal Transformers for biomedical text and Knowledge Graph data
STonKGs
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022