Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Overview

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

The script can be used for any channel or video for scraping, in addition will provide you with the option to get any automatic captions. Automatic captions are available in Dutch, English, French, German, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Turkish, Vietnamese and more or any, so use it as you wish.

usage:

pip install youtube_transcript_api scrapetube codext

for default channel

python tube.py 

Custom channel

python tube.py UCSs5vZi0U7qHLkUjF3QnaWg

Get all videos for a channel

import scrapetube

videos = scrapetube.get_channel("UCCezIgC97PvUuR4_gbFUs5g")

for video in videos:
    print(video['videoId'])

Filter for manually created transcripts

transcript = transcript_list.find_manually_created_transcript(['de', 'en'])

or automatically generated ones

transcript = transcript_list.find_generated_transcript(['de', 'en'])

The methods find_generated_transcript, find_manually_created_transcript, find_generated_transcript return Transcript objects. They contain metadata regarding the transcript:

print(
    transcript.video_id,
    transcript.language,
    transcript.language_code,
    # whether it has been manually created or generated by YouTube
    transcript.is_generated,
    # whether this transcript can be translated or not
    transcript.is_translatable,
    # a list of languages the transcript can be translated to
    transcript.translation_languages,
)

Codext, contraction of "codecs" and "extension", is a tiny library that gathers a few additional encodings for use with codecs. While imported, it registers new encodings to a proxy codecs registry for making the encodings available from the codecs.(decode|encode|open) calls.

Currently set on Braille codext.encode("Little Endian", "braille") accept even morse

Codecs categories

  • native: the built-in codecs from the original codecs package
  • non-native: this special category regroups all the categories mentioned hereafter
  • base: baseX codecs (e.g. base, base100)
  • binary: codecs working on strings but applying their algorithms on their binary forms (e.g. baudot, manchester)
  • common: common codecs not included in the native ones or simly added for the purpose of standardization (e.g. octal, ordinal)
  • crypto: codecs related to cryptography algorithms (e.g. barbie, rot, xor)
  • language: language-related codecs (e.g. morse, navajo)
  • other: uncategorized codecs (e.g. letters, url)
  • stegano: steganography-related codecs (e.g. sms, resistor)
  • Except the native and non-native categories, the other ones are simply the name of the subdirectories (with "s" right-stripped) of the codext package.
codext.list("binary")
['baudot', 'baudot-spaced', 'baudot-tape', 'bcd', 'bcd-extended0', 'bcd-extended1', 'excess3', 'gray', 'manchester', 'manchester-inverted']
codext.list("language")
['braille', 'leet', 'morse', 'navajo', 'radio', 'southpark', 'southpark-icase', 'tom-tom']
codext.list("native")
['ascii', 'base64_codec', 'big5', 'big5hkscs', 'bz2_codec', 'cp037', 'cp273', 'cp424', 'cp437', 'cp500', 'cp775', 'cp850', 'cp852', 'cp855', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', ...]

Current channels for scrapping the transcript subtitles in English language and translate them to Braille language

Up to you list, just replace the Youtube channel ID string at 🤯

videoListName = scrapetube.get_channel("UClnw_bcNg4CAzF772qEtq4g")

YouTube uses automatic speech recognition to add automatic captions to videos. The feature is available in English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish. ASR is not available for all videos.

You can eding the language at 😇

transcript = transcript_list.find_generated_transcript(['en']).fetch()

Example output:

https://www.youtube.com/watch?v=ouMK-Q9S7cc
Web3 Foundation - The Next Evolution of the Internet - Dr. Gavin Wood
⠺⠑⠃⠒⠀⠋⠕⠥⠝⠙⠁⠞⠊⠕⠝⠀⠤⠀⠞⠓⠑⠀⠝⠑⠭⠞⠀⠑⠧⠕⠇⠥⠞⠊⠕⠝⠀⠕⠋⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠤⠀⠙⠗⠨⠀⠛⠁⠧⠊⠝⠀⠺⠕⠕⠙
⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠑⠗⠑⠀⠺⠑⠗⠑⠀⠁⠀⠇⠕⠞⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠞⠓⠁⠞⠀⠗⠑⠁⠇⠇⠽⠀⠃⠑⠇⠊⠑⠧⠑⠙⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠺⠁⠎⠀⠛⠕⠝⠝⠁⠀⠃⠑⠀⠁⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠽⠀⠋⠕⠗⠀⠎⠕⠉⠊⠑⠞⠽⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠺⠓⠁⠞⠀⠓⠁⠏⠏⠑⠝⠑⠙⠀⠺⠁⠎⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠙⠑⠎⠊⠛⠝⠑⠙⠀⠊⠝⠀⠎⠥⠉⠓⠀⠁⠀⠺⠁⠽⠀⠞⠓⠁⠞⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠊⠞⠀⠺⠁⠎⠀⠋⠇⠑⠭⠊⠃⠇⠑⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠕⠋⠀⠎⠕⠉⠊⠑⠞⠽⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠺⠁⠽⠎⠀⠕⠋⠀⠙⠕⠊⠝⠛⠀⠃⠥⠎⠊⠝⠑⠎⠎⠀⠞⠕⠀⠎⠊⠍⠏⠇⠽⠀⠍⠕⠧⠑⠀⠕⠧⠑⠗⠀⠕⠝⠞⠕⠀⠞⠓⠑⠀⠙⠊⠛⠊⠞⠁⠇⠀⠙⠕⠍⠁⠊⠝⠀⠎⠕⠀⠺⠓⠑⠝⠀⠺⠑⠀⠙⠕⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠝⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠁⠀⠃⠁⠝⠅⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠕⠥⠗⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠃⠗⠊⠉⠅⠤⠁⠝⠙⠤⠍⠕⠗⠞⠁⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠁⠇⠀⠲⠴⠴⠀⠽⠑⠁⠗⠀⠕⠇⠙⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠀⠊⠞⠄⠎⠀⠚⠥⠎⠞⠀⠞⠓⠁⠞⠀⠺⠑⠀⠁⠉⠉⠑⠎⠎⠀⠞⠓⠑⠍⠀⠞⠓⠗⠕⠥⠛⠓⠀⠁⠀⠺⠑⠃⠀⠏⠁⠛⠑⠀⠊⠞⠀⠓⠁⠎⠝⠄⠞⠀⠗⠑⠁⠇⠇⠽⠀⠁⠇⠞⠑⠗⠑⠙⠀⠎⠕⠉⠊⠑⠞⠽⠀⠊⠞⠀⠗⠑⠁⠇⠇⠽⠀⠺⠁⠎⠝⠄⠞⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠁⠞⠄⠎⠀⠞⠓⠁⠞⠄⠎⠀⠑⠧⠑⠗⠍⠕⠗⠑⠀⠉⠇⠑⠁⠗⠀⠺⠓⠑⠝⠀⠺⠑⠀⠺⠓⠑⠝⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠋⠁⠉⠑⠃⠕⠕⠅⠀⠁⠝⠙⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠛⠕⠕⠛⠇⠑⠀⠞⠓⠑⠎⠑⠀⠁⠗⠑⠀⠝⠕⠞⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠺⠕⠗⠅⠊⠝⠛⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠺⠕⠗⠅⠊⠝⠛⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠓⠑⠽⠄⠗⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠅⠊⠝⠙⠎⠀⠕⠋⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠞⠓⠁⠞⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠓⠊⠑⠗⠁⠗⠉⠓⠊⠉⠁⠇⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠉⠑⠝⠞⠗⠁⠇⠊⠵⠑⠙⠀⠃⠁⠝⠅⠀⠁⠉⠉⠕⠥⠝⠞⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠍⠥⠇⠞⠊⠝⠁⠞⠊⠕⠝⠁⠇⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠀⠁⠎⠀⠁⠇⠇⠀⠕⠋⠀⠞⠓⠑⠀⠧⠁⠗⠊⠕⠥⠎⠀⠕⠞⠓⠑⠗⠀⠋⠕⠗⠞⠥⠝⠑⠀⠢⠴⠴⠀⠉⠕⠗⠏⠕⠗⠁⠞⠑⠀⠉⠕⠍⠏⠁⠝⠊⠑⠎⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠕⠀⠉⠓⠁⠝⠛⠑⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠑⠀⠗⠑⠁⠇⠇⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠃⠑⠞⠞⠑⠗⠀⠞⠓⠁⠝⠀⠉⠗⠑⠁⠞⠊⠝⠛⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠚⠥⠎⠞⠀⠁⠇⠇⠕⠺⠀⠥⠎⠀⠞⠕⠀⠍⠊⠗⠗⠕⠗⠀⠓⠕⠺⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠕⠗⠅⠎⠀⠁⠝⠽⠺⠁⠽⠀⠺⠑⠀⠝⠑⠑⠙⠀⠞⠕⠀⠉⠗⠑⠁⠞⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠋⠕⠗⠛⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠺⠕⠗⠅⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠀⠞⠕⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠉⠕⠍⠍⠥⠝⠊⠉⠁⠞⠑⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠞⠄⠎⠀⠁⠇⠎⠕⠀⠛⠕⠞⠀⠞⠕⠀⠃⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠕⠗⠛⠁⠝⠊⠵⠑⠀⠁⠝⠙⠀⠞⠗⠥⠎⠞⠀⠞⠓⠁⠞⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠎⠀⠛⠕⠊⠝⠛⠀⠞⠕⠀⠙⠕⠀⠺⠓⠁⠞⠀⠺⠓⠁⠞⠀⠞⠓⠑⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠊⠝⠀⠕⠗⠙⠑⠗⠀⠞⠕⠀⠓⠁⠧⠑⠀⠎⠕⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠎⠓⠁⠗⠑⠙⠀⠉⠕⠝⠉⠇⠥⠎⠊⠕⠝⠀⠕⠗⠀⠗⠁⠍⠊⠋⠊⠉⠁⠞⠊⠕⠝⠀⠞⠕⠀⠞⠓⠑⠀⠉⠕⠕⠏⠑⠗⠁⠞⠊⠕⠝⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠀⠃⠊⠛⠀⠉⠕⠍⠏⠕⠝⠑⠝⠞⠀⠕⠋⠀⠺⠑⠃⠀⠒⠀⠺⠑⠃⠀⠒⠀⠊⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠃⠕⠥⠞⠀⠁⠇⠇⠕⠺⠊⠝⠛⠀⠏⠑⠕⠏⠇⠑⠀⠞⠕⠀⠉⠕⠍⠑⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠁⠝⠙⠀⠉⠕⠕⠗⠙⠊⠝⠁⠞⠑⠀⠞⠓⠑⠊⠗⠀⠑⠋⠋⠕⠗⠞⠎⠀⠋⠕⠗⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠛⠗⠑⠁⠞⠑⠗⠀⠞⠓⠑⠀⠞⠓⠁⠝⠀⠞⠓⠑⠀⠎⠥⠍⠀⠕⠋⠀⠊⠞⠎⠀⠏⠁⠗⠞⠎⠀⠪⠍⠥⠎⠊⠉⠻

With Git Actions Workflow file for this run as example in real-time

available OS's: [ windows-latest, macos-latest, ubuntu-latest ]

name: Cross-platform matrix run
on: [push]
jobs:
  build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest]
        python-version: ['3.6', '3.9']
        exclude:
          - os: ubuntu-latest
            python-version: '3.6'
    steps:
      - uses: actions/[email protected]
      - name: Set up Python
        uses: actions/[email protected]
        with:
          python-version: ${{ matrix.python-version }}
      - name: Install dependencies 
        run: pip install youtube_transcript_api scrapetube codext
      - name: Web3 Foundation videos to braille language 
        run: python tube.py

For Support && Nominations

  • Display name. KSMNETWORK

  • Email [email protected]

  • Riot @gtoocool:matrix.org

  • KUSAMA (KSM) Address

  • H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ

  • PolkaDOT (DOT) Address:

  • 15FxvBFDd3X7H9qcMGqsiuvFYEg4D3mBoTA2LQufreysTHKA

  • https://ksm.network

Owner
Little Endian
Riot @gtoocool:matrix.org                  KUSAMA Address:  H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ
Little Endian
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022