Towards End-to-end Video-based Eye Tracking

Related tags

Deep LearningEVE
Overview

Towards End-to-end Video-based Eye Tracking

The code accompanying our ECCV 2020 publication and dataset, EVE.

Setup

Preferably, setup a Docker image or virtual environment (virtualenvwrapper is recommended) for this repository. Please note that we have tested this code-base in the following environments:

  • Ubuntu 18.04 / A Linux-based cluster system (CentOS 7.8)
  • Python 3.6 / Python 3.7
  • PyTorch 1.5.1

Clone this repository somewhere with:

git clone [email protected]:swook/EVE
cd EVE/

Then from the base directory of this repository, install all dependencies with:

pip install -r requirements.txt

Please note the PyTorch official installation guide for setting up the torch and torchvision packages on your specific system.

You will also need to setup ffmpeg for video decoding. On Linux, we recommend installing distribution-specific packages (usually named ffmpeg). If necessary, check out the official download page or compilation instructions.

Usage

Information on the code framework

Configuration file system

All available configuration parameters are defined in src/core/config_default.py.

In order to override the default values, one can do:

  1. Pass the parameter via a command-line parameter to train.py or inference.py. Note that in this case, replace all _ characters with -. E.g. the config. parameter refine_net_enabled becomes --refine-net-enabled 1. Note that boolean parameters can be passed in via either 0/no/false or 1/yes/true.
  2. Create a JSON file such as src/configs/eye_net.json or src/configs/refine_net.json.

The order of application are:

  1. Default parameters
  2. JSON-provided parameters, in order of JSON file declaration. For instance, in the command python train.py config1.json config2.json, config2.json overrides config1.json entries should there be any overlap.
  3. CLI-provided parameters.

Automatic logging to Google Sheets

This framework implements an automatic logging code of all parameters, loss terms, and metrics to a Google Sheets document. This is done by the gspread library. To enable this possibility, follow these instructions:

  1. Follow the instructions at https://gspread.readthedocs.io/en/latest/oauth2.html#for-end-users-using-oauth-client-id
  2. Set --gsheet-secrets-json-file to a path to the credentials JSON file, and set --gsheet-workbook-key to the document key. This key is the part after https://docs.google.com/spreadsheets/d/ and before any query or hash parameters.

An example config JSON file can be found at src/configs/sample_gsheet.json.

Training a model

To train a model, simply run python train.py from src/ with the appropriate configuration changes that are desired (see "Configuration file system" above).

Note, that in order to resume the training of an existing model you must provide the path to the output folder via the --resume-from argument.

Also, at every fresh run of train.py, a unique identifier is generated to produce a unique output folder in outputs/EVE/. Hence, it is recommended to use the Google Sheets logging feature (see "Automatic logging to Google Sheets") to keep track of your models.

Running inference

The single-sample inference script at src/inference.py takes in the same arguments as train.py but expects two arguments in particular:

  • --input-path is the path to a basler.mp4 or webcam_l.mp4 or webcam_c.mp4 or webcam_r.mp4 that exists in the EVE dataset.
  • --output-path is a path to a desired output location (ending in .mp4).

This script works for both training, validation, and test samples and shows the reference point-of-gaze ground-truth when available.

Citation

If using this code-base and/or the EVE dataset in your research, please cite the following publication:

@inproceedings{Park2020ECCV,
  author    = {Seonwook Park and Emre Aksan and Xucong Zhang and Otmar Hilliges},
  title     = {Towards End-to-end Video-based Eye-Tracking},
  year      = {2020},
  booktitle = {European Conference on Computer Vision (ECCV)}
}

Q&A

Q: How do I use this code for screen-based eye tracking?

A: This code does not offer actual eye tracking. Rather, it concerns the benchmarking of the video-based gaze estimation methods outlined in the original paper. Extending this code to support an easy-to-use software for screen-based eye tracking is somewhat non-trivial, due to requirements on camera calibration (intrinsics, extrinsics), and an efficient pipeline for accurate and stable real-time eye or face patch extraction. Thus, we consider this to be beyond the scope of this code repository.

Q: Where are the test set labels?

A: Our public evaluation server and leaderboard are hosted by Codalab at https://competitions.codalab.org/competitions/28954. This allows for evaluations on our test set to be consistent and reliable, and encourage competition in the field of video-based gaze estimation. Please note that the performance reported by Codalab is not strictly speaking comparable to the original paper's results, as we only perform evaluation on a large subset of the full test set. We recommend acquiring the updated performance figures from the leaderboard.

Comments
  • use against new dataset

    use against new dataset

    Hi,

    Can this code be used at inference time against in-the-wild mp4 that do not necessarily provide an accompanying H5? The more I work with this codebase, the more it looks obvious that w/o the mp4 being TOBII generated, this will not work. Is this true?

    thank you

    opened by inisar 0
  • File name parser

    File name parser

    File name parser can be made more robust to your own dataset files.
    Currently doesn't work for both webcam_l.mp4 and webcam_l_eyes.mp4 Please see below for filename and correction I made to make it work. src/core/inference.py try: camera_type = components[-1][:-4] except AssertionError: camera_type = camera_type[:-5]

    opened by inisar 0
  • How to synchronize the data from camera and eye tracker?

    How to synchronize the data from camera and eye tracker?

    Hi, @swook . I use OpenCV to capture the frames, what borthers me is that I don't know how to attach a timestamp to each frame and ensure the interval of each timestamp nearly the same. By using the datetime.time(), I can get the current time and regard it as the timestamp, but the interval between each of the timestamps seems to be different and has a big gap. So could you share me some details about your method which is used to synchronize the data?Or It would be very nice if you can share the source code or your method with me. Thanks.

    opened by Kihensarn 0
  • How to get the 3D gaze origin

    How to get the 3D gaze origin

    Hi, @swook Thanks for your great job, but I have a question about how to get the 3D gaze origin(determined during data pre-processing). The paper said "In pre-processing the EVEdataset, we apply a 3DMM fitting approach with interocular-distance-based scale-normalization to alleviate these issues" . However, I'm not sure about the specific process of this step. What should I do if I want to convert from landmark to 3D gaze origin? Besides, if it is possible to open some code of this part? Thanks a lot!

    opened by TeresaKumo 0
  • About the result

    About the result

    I trained the eve model with eve data, ran eval_codalab.py and got pkl file as a result. I also ran eval_codalabl.py and got pkl file from the pretrained model weights(from https://github.com/swook/EVE/releases/tag/v0.0 - eve_refinenet_CGRU_oa_skip.pt) Then, I compared these two results and the numbers seem to match. For example, from the pretrained model, I got [960. 540.] for PoG_px_final and got [963.0835 650.5635] for my model.

    However, in the eve paper, table3 shows that the PoG_px in GRU model with oa+skip is 95.59 Numbers in paper is 1/10 of the numbers i got from eval_codalab and not sure what went wrong. Are they supposed to match? If they are not supposed to match, how do you calculate the numbers?

    Also, in the result page of codalab, the gaze direction(angular error) is shown, but the eval_codalab.py doesn't store gaze direction. (Keys_to_store=['left pupil size' , 'right pupil', 'pog__px_initial', 'pog_px_final', 'timestamp']) How should I get gaze direction error in degree?

    opened by chaeyoun 1
Owner
Seonwook Park
Seonwook Park
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022