Training Very Deep Neural Networks Without Skip-Connections

Overview

DiracNets

v2 update (January 2018):

The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without weight decay. This allowed us to significantly simplify the network, which is now folds into a simple chain of convolution-ReLU layers, like VGG. On ImageNet DiracNet-18 and DiracNet-34 closely match corresponding ResNet with the same number of parameters.

See v1 branch for DiracNet-v1.


PyTorch code and models for DiracNets: Training Very Deep Neural Networks Without Skip-Connections

https://arxiv.org/abs/1706.00388

Networks with skip-connections like ResNet show excellent performance in image recognition benchmarks, but do not benefit from increased depth, we are thus still interested in learning actually deep representations, and the benefits they could bring. We propose a simple weight parameterization, which improves training of deep plain (without skip-connections) networks, and allows training plain networks with hundreds of layers. Accuracy of our proposed DiracNets is close to Wide ResNet (although DiracNets need more parameters to achieve it), and we are able to match ResNet-1000 accuracy with plain DiracNet with only 28 layers. Also, the proposed Dirac weight parameterization can be folded into one filter for inference, leading to easily interpretable VGG-like network.

DiracNets on ImageNet:

TL;DR

In a nutshell, Dirac parameterization is a sum of filters and scaled Dirac delta function:

conv2d(x, alpha * delta + W)

Here is simplified PyTorch-like pseudocode for the function we use to train plain DiracNets (with weight normalization):

def dirac_conv2d(input, W, alpha, beta)
    return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

where alpha and beta are per-channel scaling multipliers, and normalize does l_2 normalization over each feature plane.

Code

Code structure:

├── README.md # this file
├── diracconv.py # modular DiracConv definitions
├── test.py # unit tests
├── diracnet-export.ipynb # ImageNet pretrained models
├── diracnet.py # functional model definitions
└── train.py # CIFAR and ImageNet training code

Requirements

First install PyTorch, then install torchnet:

pip install git+https://github.com/pytorch/[email protected]

Install other Python packages:

pip install -r requirements.txt

To train DiracNet-34-2 on CIFAR do:

python train.py --save ./logs/diracnets_$RANDOM$RANDOM --depth 34 --width 2

To train DiracNet-18 on ImageNet do:

python train.py --dataroot ~/ILSVRC2012/ --dataset ImageNet --depth 18 --save ./logs/diracnet_$RANDOM$RANDOM \
                --batchSize 256 --epoch_step [30,60,90] --epochs 100 --weightDecay 0.0001 --lr_decay_ratio 0.1

nn.Module code

We provide DiracConv1d, DiracConv2d, DiracConv3d, which work like nn.Conv1d, nn.Conv2d, nn.Conv3d, but have Dirac-parametrization inside (our training code doesn't use these modules though).

Pretrained models

We fold batch normalization and Dirac parameterization into F.conv2d weight and bias tensors for simplicity. Resulting models are as simple as VGG or AlexNet, having only nonlinearity+conv2d as a basic block.

See diracnets.ipynb for functional and modular model definitions.

There is also folded DiracNet definition in diracnet.py, which uses code from PyTorch model_zoo and downloads pretrained model from Amazon S3:

from diracnet import diracnet18
model = diracnet18(pretrained=True)

Printout of the model above:

DiracNet(
  (features): Sequential(
    (conv): Conv2d (3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
    (max_pool0): MaxPool2d(kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), ceil_mode=False)
    (group0.block0.relu): ReLU()
    (group0.block0.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block1.relu): ReLU()
    (group0.block1.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block2.relu): ReLU()
    (group0.block2.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group0.block3.relu): ReLU()
    (group0.block3.conv): Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group1.block0.relu): ReLU()
    (group1.block0.conv): Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block1.relu): ReLU()
    (group1.block1.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block2.relu): ReLU()
    (group1.block2.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group1.block3.relu): ReLU()
    (group1.block3.conv): Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group2.block0.relu): ReLU()
    (group2.block0.conv): Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block1.relu): ReLU()
    (group2.block1.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block2.relu): ReLU()
    (group2.block2.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group2.block3.relu): ReLU()
    (group2.block3.conv): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (max_pool3): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
    (group3.block0.relu): ReLU()
    (group3.block0.conv): Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block1.relu): ReLU()
    (group3.block1.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block2.relu): ReLU()
    (group3.block2.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (group3.block3.relu): ReLU()
    (group3.block3.conv): Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (last_relu): ReLU()
    (avg_pool): AvgPool2d(kernel_size=7, stride=7, padding=0, ceil_mode=False, count_include_pad=True)
  )
  (fc): Linear(in_features=512, out_features=1000)
)

The models were trained with OpenCV, so you need to use it too to reproduce stated accuracy.

Pretrained weights for DiracNet-18 and DiracNet-34:
https://s3.amazonaws.com/modelzoo-networks/diracnet18v2folded-a2174e15.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34v2folded-dfb15d34.pth

Pretrained weights for the original (not folded) model, functional definition only:
https://s3.amazonaws.com/modelzoo-networks/diracnet18-v2_checkpoint.pth
https://s3.amazonaws.com/modelzoo-networks/diracnet34-v2_checkpoint.pth

We plan to add more pretrained models later.

Bibtex

@inproceedings{Zagoruyko2017diracnets,
    author = {Sergey Zagoruyko and Nikos Komodakis},
    title = {DiracNets: Training Very Deep Neural Networks Without Skip-Connections},
    url = {https://arxiv.org/abs/1706.00388},
    year = {2017}}
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022