Statistical tests for the sequential locality of graphs

Overview

Statistical tests for the sequential locality of graphs

You can assess the statistical significance of the sequential locality of an adjacency matrix (graph + vertex sequence) using sequential_locality.py.

This file also includes ORGM.py that generates an instance of the ordered random graph model (ORGM) [1] and spectral.py that yields an optimized vertex sequence based on the spectral ordering algorithms.

Please find Ref. [1] for the details of the statistical tests.

sequential_locality.py

sequential_locality.py executes statistical tests with respect to the sequential locality.

Simple example

import numpy as np
import igraph
import sequential_locality as seq

s = seq.SequentialLocality(
		g = igraph.Graph.Erdos_Renyi(n=20,m=80), 
		sequence = np.arange(20)
		)
s.H1()
{'H1': 1.0375,
 'z1': 0.5123475382979811,
 'H1 p-value (ER/ORGM)': 0.6957960998835012,
 'H1 p-value (random)': 0.7438939644617626,
 'bandwidth_opt': None}

Please find Demo.ipynb for more examples.

SequentialLocality

This is a class to be instantiated to assess the sequential locality.

Input parameters

Either g or edgelist must be provided as an input.

Parameter Value Default Description
g graph None Graph (undirected, unweighted, no self-loops) in igraph or graph-tool.
edgelist list of tuples None Edgelist as a list of tuples.
sequence 1-dim array None Array (list or ndarray) indicating the vertex ordering. If provided, the vertex indices in the graph will be replaced based on sequence . If sequence is None, the intrinsic vertex indices in the graph or edgelist will be used as the sequence .
format 'igraph' or 'graph-tool' 'igraph' Input graph format
simple Boolean True If True, the graph is assumed to be a simple graph, otherwise the graph is assumed to be a multigraph.

H1

This is a method that returns H1 and z1 test statistics and p-values of the input data.

Input parameters

Parameter Value Default Description
random_sequence 'analytical' or 'empirical' 'analytical' If 'analytical' is selected, the p-value based on the normal approximation will be returned for the test of vertex sequence H1 p-value (random). If 'empirical' is selected, the p-value based on random sequences specified by samples will be returned.
n_samples Integer 10,000 Number of samples to be drawn as a set of random sequences. This is used only when random_sequence = 'empirical'.
in_envelope Boolean False If False, the p-value based on the ER model will be returned. If True, the p-value based on the ORGM will be returned. That is, the matrix elements outside of the bandwidth r will be ignored.
r Integer None An integer between 1 and N-1. If provided, r will be used as the bandwidth when in_envelope=True.

Output parameters

Parameter Description
H1 H1 test statistic of the input data (graph & vertex sequence)
z1 z1 test statistic of the input data
H1 p-value (ER/ORGM) p-value under the null hypothesis of the ER random graph (when in_envelope=False) or the ORGM (when in_envelope=True).
H1 p-value (random) p-value under the null hypothesis of random sequences
bandwidth_opt Maximum likelihood estimate (MLE) of the bandwidth (when r=None in the input) or the input bandwidth r

HG

This is a method that returns HG and zG test statistics and p-values of the input data.

  • There is no in_envelope option for the test based on HG.
  • random_sequence = 'analytical' can be computationally demanding.

Input parameters

Parameter Value Default Description
random_sequence 'analytical' or 'empirical' 'empirical' If 'analytical' is selected, the p-value based on the normal approximation will be returned for the test of vertex sequence H1 p-value (random). If 'empirical' is selected, the p-value based on random sequences specified by samples will be returned.
n_samples Integer 10,000 Number of samples to be drawn as a set of random sequences. This is used only when random_sequence = 'empirical'.

Output parameters

Parameter Description
HG HG test statistic of the input data (graph & vertex sequence)
zG zG test statistic of the input data
HG p-value (ER) p-value under the null hypothesis of the ER random graph.
HG p-value (random) p-value under the null hypothesis of random sequences

ORGM.py

ORGM.py is a random graph generator. It generates an ORGM [1] instance that has a desired strength of sequentially lcoal structure.

Simple example

import ORGM as orgm

edgelist, valid = orgm.ORGM(
	N=20, M=80, bandwidth=10, epsilon=0.25
	)

Input parameters

Parameter Value Default Description
N Integer required input Number of vertices
M Integer required input Number of edges
bandwidth Integer required input Bandwidth of the ORGM
epsilon Float (in [0,1]) required input Density ratio between the adjacency matrix elements inside & outside of the envelope. When epsilon=1, the ORGM becomes a uniform model. When epsilon=0, the nonzero matrix elements are strictly confined in the envelope.
simple Boolean True If True, the graph is constrained to be simple. If False, the graph is allowed to have multiedges.

spectral.py

spectral.py is an implementation of the spectral ordering [2].

Simple example

import graph_tool.all as gt
import spectral

g_real = gt.collection.ns['karate/77']
inferred_sequence = spectral.spectral_sequence(
	g= g_real, 
	format='graph-tool'
	)
Parameter Value Default Description
g graph required input graph (undirected, unweighted, no self-loops) in igraph or graph-tool
normalized Boolean True Normalized Laplacian (True) vs unnormalized (combinatorial) Laplacian (False)
format 'igraph' or 'graph-tool' 'igraph' Input graph format

Citation

Please use Ref. [1] for the citation of the present code.

References

  • [1] Tatsuro Kawamoto and Teruyoshi Kobayashi, "Sequential locality of graphs and its hypothesis testing," arXiv:2111.11267 (2021).
  • [2] Chris Ding and Xiaofeng He, "Linearized Cluster Assignment via Spectral Ordering," Proceedings of the Twenty-First International Conference on Machine Learning (ICML) (2004).
An AWS Pentesting tool that lets you use one-liner commands to backdoor an AWS account's resources with a rogue AWS account - or share the resources with the entire internet 😈

An AWS Pentesting tool that lets you use one-liner commands to backdoor an AWS account's resources with a rogue AWS account - or share the resources with the entire internet 😈

Brandon Galbraith 276 Mar 03, 2021
Declarative HTTP Testing for Python and anything else

Gabbi Release Notes Gabbi is a tool for running HTTP tests where requests and responses are represented in a declarative YAML-based form. The simplest

Chris Dent 139 Sep 21, 2022
Find index entries in $INDEX_ALLOCATION attributes

INDXRipper Find index entries in $INDEX_ALLOCATION attributes Timeline created using mactime.pl on the combined output of INDXRipper and fls. See: sle

32 Nov 05, 2022
Aplikasi otomasi klik di situs popcat.click menggunakan Python dan Selenium

popthe-popcat Aplikasi Otomasi Klik di situs popcat.click. aplikasi ini akan secara otomatis melakukan click pada kucing viral itu, sehingga anda tida

cndrw_ 2 Oct 07, 2022
Bayesian A/B testing

bayesian_testing is a small package for a quick evaluation of A/B (or A/B/C/...) tests using Bayesian approach.

Matus Baniar 35 Dec 15, 2022
masscan + nmap 快速端口存活检测和服务识别

masnmap masscan + nmap 快速端口存活检测和服务识别。 思路很简单,将masscan在端口探测的高速和nmap服务探测的准确性结合起来,达到一种相对比较理想的效果。 先使用masscan以较高速率对ip存活端口进行探测,再以多进程的方式,使用nmap对开放的端口进行服务探测。 安

starnightcyber 75 Dec 19, 2022
Sixpack is a language-agnostic a/b-testing framework

Sixpack Sixpack is a framework to enable A/B testing across multiple programming languages. It does this by exposing a simple API for client libraries

1.7k Dec 24, 2022
A pure Python script to easily get a reverse shell

easy-shell A pure Python script to easily get a reverse shell. How it works? After sending a request, it generates a payload with different commands a

Cristian Souza 48 Dec 12, 2022
An Instagram bot that can mass text users, receive and read a text, and store it somewhere with user details.

Instagram Bot 🤖 July 14, 2021 Overview 👍 A multifunctionality automated instagram bot that can mass text users, receive and read a message and store

Abhilash Datta 14 Dec 06, 2022
HTTP client mocking tool for Python - inspired by Fakeweb for Ruby

HTTPretty 1.0.5 HTTP Client mocking tool for Python created by Gabriel Falcão . It provides a full fake TCP socket module. Inspired by FakeWeb Github

Gabriel Falcão 2k Jan 06, 2023
A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:

A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:

Dion Häfner 255 Jan 04, 2023
FauxFactory generates random data for your automated tests easily!

FauxFactory FauxFactory generates random data for your automated tests easily! There are times when you're writing tests for your application when you

Og Maciel 37 Sep 23, 2022
A Python program that will log into your scheduled Google Meets hands free

Chrome GMautomation General Information This Python program will open up Chrome and log into your scheduled Google Meet with camera and mic turned off

Jonathan Leow 5 Dec 31, 2021
Generates realistic traffic for load testing tile servers

Generates realistic traffic for load testing tile servers. Useful for: Measuring throughput, latency and concurrency of your tile serving stack. Ident

Brandon Liu 23 Dec 05, 2022
A Modular Penetration Testing Framework

fsociety A Modular Penetration Testing Framework Install pip install fsociety Update pip install --upgrade fsociety Usage usage: fsociety [-h] [-i] [-

fsociety-team 802 Dec 31, 2022
Automated Penetration Testing Framework

Automated Penetration Testing Framework

OWASP 2.1k Jan 01, 2023
:game_die: Pytest plugin to randomly order tests and control random.seed

pytest-randomly Pytest plugin to randomly order tests and control random.seed. Features All of these features are on by default but can be disabled wi

pytest-dev 471 Dec 30, 2022
The evaluator covering all of the metrics required by tasks within the DUE Benchmark.

DUE Evaluator The repository contains the evaluator covering all of the metrics required by tasks within the DUE Benchmark, i.e., set-based F1 (for KI

DUE Benchmark 4 Jan 21, 2022
Silky smooth profiling for Django

Silk Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before prese

Jazzband 3.7k Jan 04, 2023
Wraps any WSGI application and makes it easy to send test requests to that application, without starting up an HTTP server.

WebTest This wraps any WSGI application and makes it easy to send test requests to that application, without starting up an HTTP server. This provides

Pylons Project 325 Dec 30, 2022