PyTorch implementations of normalizing flow and its variants.

Overview

Normalizing Flows by PyTorch

Codacy Badge

PyTorch implementations of the networks for normalizing flows.

Models

Currently, following networks are implemented.

  • Planar flow
    • Rezende and Mohamed 2015, "Variational Inference with Normalizing Flows," [arXiv]
  • RealNVP
    • Dinh et al., 2016, "Density Estimation using Real NVP," [arXiv]
  • Glow
    • Kingma and Dhariwal 2018, "Glow: Generative Flow with Invertible 1x1 Convolutions," [arXiv] [code]
  • Flow++
    • Ho et al., 2019, "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design," [arXiv] [code]
  • MAF
    • Papamakarios et al., 2017, “Masked Autoregressive Flow for Density Estimation,” [arXiv]
  • Residual Flow
    • Behrmann et al., 2018, "Residual Flows for Invertible Generative Modeling," [arXiv] [code]
  • FFJORD
    • Grathwohl et al., 2018, "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models," [arXiv] [code]

Note: This repository is for easier understanding of the above networks. Therefore, you should use official source cods if provided.

Setup

Anaconda

By Anaconda, you can easily setup the environment using environment.yml.

$ conda env create -f environment.yml

Pip

If you use pip or other tools, see the dependencies in environment.yml

Run

This repo uses hydra to manage hyper parameters in training and evaluation. See configs folder to check the parameters for each network.

$ python main.py \
    network=[planar, realnvp, glow, flow++, maf, resflow, ffjord]\
    run.distrib=[circles, moons, normals, swiss, s_curve, mnist, cifar10]

Note: Currently, I tested the networks only for 2D density transformation. So, results for 3D densities (swiss and s_curve) and images (mnist and cifar10) could be what you expect.

Results

See results/README.md for more results.

Real NVP

Target Reproduced Training

Copyright

MIT License (c) 2020, Tatsuya Yatagawa

Owner
Tatsuya Yatagawa
Tatsuya Yatagawa
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
270 Dec 24, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
pip install antialiased-cnns to improve stability and accuracy

Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru

Adobe, Inc. 1.6k Dec 28, 2022