PyTorch implementations of normalizing flow and its variants.

Overview

Normalizing Flows by PyTorch

Codacy Badge

PyTorch implementations of the networks for normalizing flows.

Models

Currently, following networks are implemented.

  • Planar flow
    • Rezende and Mohamed 2015, "Variational Inference with Normalizing Flows," [arXiv]
  • RealNVP
    • Dinh et al., 2016, "Density Estimation using Real NVP," [arXiv]
  • Glow
    • Kingma and Dhariwal 2018, "Glow: Generative Flow with Invertible 1x1 Convolutions," [arXiv] [code]
  • Flow++
    • Ho et al., 2019, "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design," [arXiv] [code]
  • MAF
    • Papamakarios et al., 2017, “Masked Autoregressive Flow for Density Estimation,” [arXiv]
  • Residual Flow
    • Behrmann et al., 2018, "Residual Flows for Invertible Generative Modeling," [arXiv] [code]
  • FFJORD
    • Grathwohl et al., 2018, "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models," [arXiv] [code]

Note: This repository is for easier understanding of the above networks. Therefore, you should use official source cods if provided.

Setup

Anaconda

By Anaconda, you can easily setup the environment using environment.yml.

$ conda env create -f environment.yml

Pip

If you use pip or other tools, see the dependencies in environment.yml

Run

This repo uses hydra to manage hyper parameters in training and evaluation. See configs folder to check the parameters for each network.

$ python main.py \
    network=[planar, realnvp, glow, flow++, maf, resflow, ffjord]\
    run.distrib=[circles, moons, normals, swiss, s_curve, mnist, cifar10]

Note: Currently, I tested the networks only for 2D density transformation. So, results for 3D densities (swiss and s_curve) and images (mnist and cifar10) could be what you expect.

Results

See results/README.md for more results.

Real NVP

Target Reproduced Training

Copyright

MIT License (c) 2020, Tatsuya Yatagawa

Owner
Tatsuya Yatagawa
Tatsuya Yatagawa
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
pip install antialiased-cnns to improve stability and accuracy

Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru

Adobe, Inc. 1.6k Dec 28, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards

TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and

Kaiyu Yue 275 Nov 22, 2022
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022