Provide a market analysis (R)

Overview

market-study

Provide a market analysis (R) - FRENCH

Produisez une étude de marché

Prérequis

Pour effectuer ce projet, vous devrez maîtriser la manipulation de données en Python ou R, appliquer ces langages à la statistique descriptive ainsi qu'à la classification automatique.

Scénario

Votre entreprise d'agroalimentaire souhaite se développer à l'international. Elle est spécialisée dans...

... le poulet !

L'international, oui, mais pour l'instant, le champ des possibles est bien large : aucun pays particulier ni aucun continent n'est pour le moment choisi. Tous les pays sont envisageables !

Votre objectif sera d'aider à cibler plus particulièrement certains pays, dans le but d'approfondir ensuite l'étude de marché. Plus particulièrement, l'idéal serait de produire des "groupes" de pays, plus ou moins gros, dont on connaît les caractéristiques.

Dans un premier temps, la stratégie est plutôt d'exporter les produits plutôt que de produire sur place, c'est-à-dire dans le(s) nouveau(x) pays ciblé(s).

Les données

Vous vous souvenez de la FAO, dans l'un de vos précédents projets ? Allez, on y retourne ! Vous connaissez déjà l'interface du site, à vous de retrouver les données qui vous seront utiles pour le projet.

Votre mission

Pour identifier les pays propices à une insertion dans le marché du poulet, il vous a été demandé de cibler les pays. Il vous faudra également étudier les régimes alimentaires de chaque pays, notamment en termes de protéines d'origine animale et en termes de calories.

Construisez votre échantillon contenant l'ensemble des pays disponibles, chacun caractérisé par ces variables :

différence de population entre une année antérieure (au choix) et l'année courante, exprimée en pourcentage ; proportion de protéines d'origine animale par rapport à la quantité totale de protéines dans la disponibilité alimentaire du pays ; disponibilité alimentaire en protéines par habitant ; disponibilité alimentaire en calories par habitant. Construisez un dendrogramme contenant l'ensemble des pays étudiés, puis coupez-le afin d'obtenir 5 groupes.

Caractérisez chacun de ces groupes selon les variables cités précédemment, et facultativement selon d'autres variables que vous jugerez pertinentes (ex : le PIB par habitant). Vous pouvez le faire en calculant la position des centroïdes de chacun des groupes, puis en les commentant et en les critiquant au vu de vos objectifs.

Donnez une courte liste de pays à cibler, en présentant leurs caractéristiques. Un découpage plus précis qu'en 5 groupes peut si besoin être effectué pour cibler un nombre raisonnable de pays.

Visualisez vos partitions dans le premier plan factoriel obtenu par ACP.

Dans votre partition, vous avez obtenu des groupes distincts. Vérifiez donc qu'ils diffèrent réellement. Pour cela, réalisez les tests statistiques suivants :

un test d'adéquation : parmi les 4 variables, ou parmi d'autres variables que vous trouverez pertinentes, trouvez une variable dont la loi est normale ; un test de comparaison de deux populations (dans le cas gaussien) : choisissez 2 clusters parmi ceux que vous aurez déterminé. Sur ces 2 clusters, testez la variable gaussienne grâce à un test de comparaison.

Pandas and Spark DataFrame comparison for humans

DataComPy DataComPy is a package to compare two Pandas DataFrames. Originally started to be something of a replacement for SAS's PROC COMPARE for Pand

Capital One 259 Dec 24, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

WhiteBox 3 Oct 03, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
An extension to pandas dataframes describe function.

pandas_summary An extension to pandas dataframes describe function. The module contains DataFrameSummary object that extend describe() with: propertie

Mourad 450 Dec 30, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
Weather analysis with Python, SQLite, SQLAlchemy, and Flask

Surf's Up Weather analysis with Python, SQLite, SQLAlchemy, and Flask Overview The purpose of this analysis was to examine weather trends (precipitati

Art Tucker 1 Sep 05, 2021