This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes.

Overview

Deploying ML models with FastAPI, Docker, and Kubernetes

By: Sayak Paul and Chansung Park

This project shows how to serve an ONNX-optimized image classification model as a RESTful web service with FastAPI, Docker, and Kubernetes (k8s). The idea is to first Dockerize the API and then deploy it on a k8s cluster running on Google Kubernetes Engine (GKE). We do this integration using GitHub Actions.

πŸ‘‹ Note: Even though this project uses an image classification its structure and techniques can be used to serve other models as well.

Deploying the model as a service with k8s

  • We decouple the model optimization part from our API code. The optimization part is available within the notebooks/TF_to_ONNX.ipynb notebook.

  • Then we locally test the API. You can find the instructions within the api directory.

  • To deploy the API, we define our deployment.yaml workflow file inside .github/workflows. It does the following tasks:

    • Looks for any changes in the specified directory. If there are any changes:
    • Builds and pushes the latest Docker image to Google Container Register (GCR).
    • Deploys the Docker container on the k8s cluster running on GKE.

Configurations needed beforehand

  • Create a k8s cluster on GKE. Here's a relevant resource.

  • Create a service account key (JSON) file. It's a good practice to only grant it the roles required for the project. For example, for this project, we created a fresh service account and granted it permissions for the following: Storage Admin, GKE Developer, and GCR Developer.

  • Crete a secret named GCP_CREDENTIALS on your GitHub repository and copy paste the contents of the service account key file into the secret.

  • Configure bucket storage related permissions for the service account:

    $ export PROJECT_ID=<PROJECT_ID>
    $ export ACCOUNT=<ACCOUNT>
    
    $ gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.admin
    
    $ gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.objectAdmin
    
    gcloud -q projects add-iam-policy-binding ${PROJECT_ID} \
        --member=serviceAccount:${ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
        --role roles/storage.objectCreator
  • If you're on the main branch already then upon a new push, the worflow defined in .github/workflows/deployment.yaml should automatically run. Here's how the final outputs should look like so (run link):

Notes

  • Since we use CPU-based pods within the k8s cluster, we use ONNX optimizations since they are known to provide performance speed-ups for CPU-based environments. If you are using GPU-based pods then look into TensorRT.
  • We use Kustomize to manage the deployment on k8s.

Querying the API endpoint

From workflow outputs, you should see something like so:

NAME             TYPE           CLUSTER-IP     EXTERNAL-IP     PORT(S)        AGE
fastapi-server   LoadBalancer   xxxxxxxxxx   xxxxxxxxxx        80:30768/TCP   23m
kubernetes       ClusterIP      xxxxxxxxxx     <none>          443/TCP        160m

Note the EXTERNAL-IP corresponding to fastapi-server (iff you have named your service like so). Then cURL it:

curl -X POST -F [email protected] -F with_resize=True -F with_post_process=True http://{EXTERNAL-IP}:80/predict/image

You should get the following output (if you're using the cat.jpg image present in the api directory):

"{\"Label\": \"tabby\", \"Score\": \"0.538\"}"

The request assumes that you have a file called cat.jpg present in your working directory.

TODO (s)

  • Set up logging for the k8s pods.
  • Find a better way to report the latest API endpoint.

Acknowledgements

ML-GDE program for providing GCP credit support.

Comments
  • Feat/locust grpc

    Feat/locust grpc

    @deep-diver currently, the load test runs into:

    Screenshot 2022-04-02 at 10 54 26 AM

    I have ensured https://github.com/sayakpaul/ml-deployment-k8s-fastapi/blob/feat/locust-grpc/locust/grpc/locustfile.py#L49 returns the correct output. But after a few requests, I run into the above problem.

    Also, I should mention that the gRPC client currently does not take care of image resizing which makes it a bit less comparable to the REST client which handles preprocessing as well postprocessing.

    opened by sayakpaul 18
  • Setup TF Serving based deployment

    Setup TF Serving based deployment

    In this new feature, the following works are expected

    • Update the notebook Create a new notebook with the TF Serving prototype based on both gRPC(Ref) and RestAPI(Ref).

    • Update the notebook Update the newly created notebook to check the %%timeit on the TF Serving server locally.

    • Build/Commit docker image based on TF Serving base image using this method.

    • Deploy the built docker image on GKE cluster

    • Check the deployed model's performance with a various scenarios (maybe the same ones applied to ONNX+FastAPI scenarios)

    new feature 
    opened by deep-diver 11
  • Perform load testing with Locust

    Perform load testing with Locust

    Resources:

    • https://towardsdatascience.com/performance-testing-an-ml-serving-api-with-locust-ecd98ab9b7f7
    • https://microsoft.github.io/PartsUnlimitedMRP/pandp/200.1x-PandP-LocustTest.html
    • https://github.com/https-deeplearning-ai/machine-learning-engineering-for-production-public/tree/main/course4/week2-ungraded-labs/C4_W2_Lab_3_Latency_Test_Compose
    opened by sayakpaul 10
  • 4 dockerize

    4 dockerize

    fix

    • move api/utils/requirements.txt to /api
    • add missing dependency python-multipart to the requirements.txt

    add

    • Dockerfile

    Closes https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/4

    opened by deep-diver 4
  • Deployment on GKE with GitHub Actions

    Deployment on GKE with GitHub Actions

    Closes https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/5, https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/7, and https://github.com/sayakpaul/ml-deployment-k8s-fastapi/issues/6.

    opened by sayakpaul 2
  • chore: refactored the colab notebook.

    chore: refactored the colab notebook.

    Just added a text cell explaining why it's better to include the preprocessing function in the final exported model. Also, added a cell to show if the TF and ONNX outputs match with np.testing.assert_allclose().

    opened by sayakpaul 2
Owner
Sayak Paul
ML Engineer at @carted | One PR at a time
Sayak Paul
Opinionated authorization package for FastAPI

FastAPI Authorization Installation pip install fastapi-authorization Usage Currently, there are two models available: RBAC: Role-based Access Control

Marcelo Trylesinski 18 Jul 04, 2022
API written using Fast API to manage events and implement a leaderboard / badge system.

Open Food Facts Events API written using Fast API to manage events and implement a leaderboard / badge system. Installation To run the API locally, ru

Open Food Facts 5 Jan 07, 2023
Easily integrate socket.io with your FastAPI app πŸš€

fastapi-socketio Easly integrate socket.io with your FastAPI app. Installation Install this plugin using pip: $ pip install fastapi-socketio Usage To

Srdjan Stankovic 210 Dec 23, 2022
Browse JSON API in a HTML interface.

Falcon API Browse This project provides a middleware for Falcon Web Framework that will render the response in an HTML form for documentation purpose.

Abhilash Raj 4 Mar 16, 2022
flask extension for integration with the awesome pydantic package

flask extension for integration with the awesome pydantic package

249 Jan 06, 2023
🐞 A debug toolbar for FastAPI based on the original django-debug-toolbar. 🐞

Debug Toolbar 🐞 A debug toolbar for FastAPI based on the original django-debug-toolbar. 🐞 Swagger UI & GraphQL are supported. Documentation: https:/

Dani 74 Dec 30, 2022
Utils for fastapi based services.

Installation pip install fastapi-serviceutils Usage For more details and usage see: readthedocs Development Getting started After cloning the repo

Simon Kallfass 31 Nov 25, 2022
A FastAPI Plug-In to support authentication authorization using the Microsoft Authentication Library (MSAL)

FastAPI/MSAL - MSAL (Microsoft Authentication Library) plugin for FastAPI FastAPI - https://github.com/tiangolo/fastapi FastAPI is a modern, fast (hig

Dudi Levy 15 Jul 20, 2022
A FastAPI Middleware of joerick/pyinstrument to check your service performance.

fastapi_profiler A FastAPI Middleware of joerick/pyinstrument to check your service performance. πŸ“£ Info A FastAPI Middleware of pyinstrument to check

LeoSun 107 Jan 05, 2023
A minimum reproducible repository for embedding panel in FastAPI

FastAPI-Panel A minimum reproducible repository for embedding panel in FastAPI Follow either This Tutorial or These steps below ↓↓↓ Clone the reposito

Tyler Houssian 15 Sep 22, 2022
API for Submarino store

submarino-api API for the submarino e-commerce documentation read the documentation in: https://submarino-api.herokuapp.com/docs or in https://submari

Miguel 1 Oct 14, 2021
Slack webhooks API served by FastAPI

Slackers Slack webhooks API served by FastAPI What is Slackers Slackers is a FastAPI implementation to handle Slack interactions and events. It serves

Niels van Huijstee 68 Jan 05, 2023
A FastAPI WebSocket application that makes use of ncellapp package by @hemantapkh

ncellFastAPI author: @awebisam Used FastAPI to create WS application. Ncellapp module by @hemantapkh NOTE: Not following best practices and, needs ref

Aashish Bhandari 7 Oct 01, 2021
A fast and durable Pub/Sub channel over Websockets. FastAPI + WebSockets + PubSub == ⚑ πŸ’ͺ ❀️

⚑ πŸ—žοΈ FastAPI Websocket Pub/Sub A fast and durable Pub/Sub channel over Websockets. The easiest way to create a live publish / subscribe multi-cast ov

8 Dec 06, 2022
A kedro-plugin to serve Kedro Pipelines as API

General informations Software repository Latest release Total downloads Pypi Code health Branch Tests Coverage Links Documentation Deployment Activity

Yolan HonorΓ©-RougΓ© 12 Jul 15, 2022
Instrument your FastAPI app

Prometheus FastAPI Instrumentator A configurable and modular Prometheus Instrumentator for your FastAPI. Install prometheus-fastapi-instrumentator fro

Tim Schwenke 441 Jan 05, 2023
A Flask extension that enables or disables features based on configuration.

Flask FeatureFlags This is a Flask extension that adds feature flagging to your applications. This lets you turn parts of your site on or off based on

Rachel Greenfield 131 Sep 26, 2022
Flask-Bcrypt is a Flask extension that provides bcrypt hashing utilities for your application.

Flask-Bcrypt Flask-Bcrypt is a Flask extension that provides bcrypt hashing utilities for your application. Due to the recent increased prevelance of

Max Countryman 310 Dec 14, 2022
FastAPI backend for Repost

Repost FastAPI This is the FastAPI implementation of the Repost API. Installation Python 3 must be installed and accessible through the use of a termi

PC 7 Jun 15, 2021
Turns your Python functions into microservices with web API, interactive GUI, and more.

Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and

Machine Learning Tooling 2.8k Jan 04, 2023