This repo presents you the official code of "VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention"

Related tags

MiscellaneousVISTA
Overview

VISTA

arc

VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention

Shengheng Deng, Zhihao Liang, Lin Sun and Kui Jia*

(*) Corresponding author

Introduction

Detecting objects from LiDAR point clouds is of tremendous significance in autonomous driving. In spite of good progress, accurate and reliable 3D detection is yet to be achieved due to the sparsity and irregularity of LiDAR point clouds. Among existing strategies, multi-view methods have shown great promise by leveraging the more comprehensive information from both bird's eye view (BEV) and range view (RV). These multi-view methods either refine the proposals predicted from single view via fused features, or fuse the features without considering the global spatial context; their performance is limited consequently. In this paper, we propose to adaptively fuse multi-view features in a global spatial context via Dual Cross-VIew SpaTial Attention (VISTA). The proposed VISTA is a novel plug-and-play fusion module, wherein the multi-layer perceptron widely adopted in standard attention modules is replaced with a convolutional one. Thanks to the learned attention mechanism, VISTA can produce fused features of high quality for prediction of proposals. We decouple the classification and regression tasks in VISTA, and an additional constraint of attention variance is applied that enables the attention module to focus on specific targets instead of generic points. [arxiv]

Requirements

  • Linux
  • Python 3.7+ (Tested on 3.7)
  • PyTorch 1.8 or higher (Tested on 1.8.1)
  • CUDA 11.1 or higher (Tested on 11.1)
  • spconv 2.0+

Notes

  • Spconv should be the exact same version we provide in the instruction down below

  • Nuscenes-Devkit should be the exact same version we provide in the instruction down below

Installation

Make sure your gpu driver and system environment support the pytorch version

conda create --name vista python=3.7
conda activate vista
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

git clone https://github.com/Gorilla-Lab-SCUT/VISTA.git

pip install -r requirements.txt

python setup.py build develop

Spconv

Please refer to spconv for detailed installation instructions

In our cases, we follow the command down below to install the latest spconv 2.0 which is faster and lighter than spconv 1.0, and is easier to install

pip install spconv-cu111

NOTE You need to install the spconv according to your current CUDA version!

Nuscenes-Devkit

git clone https://github.com/AndlollipopDE/nuscenes.git
cd nuscenes
pip install -r requirements.txt
python setup.py install

Data Preparation

Download the nuscenes data and organise as follows

NUSCENES_TRAINVAL_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-trainval <-- metadata and annotations
NUSCENES_TEST_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       └── v1.0-test     <-- metadata

Then run the following command to create data pkl for trainval set

python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10

If you want to create data pkl for test set:

python tools/create_data.py nuscenes_data_prep_test --root_path=NUSCENES_TEST_DATASET_ROOT --nsweeps=10

Training

We provide the configurations. Please modify the data path and batch size accordingly

To train the VISTA, please run the following command, note that you should modify the workdir path and CUDA GPU Number in the script

./tools/scripts/train.sh experiment_description configuration_path

To resume a training, run

./tools/scripts/train.sh experiment_description configuration_path resume_checkpoint_path

Evaluation and Testing

To evaluate the VISTA on the validation set, simply run

./tools/scripts/test.sh configuration_path work_dir workdir/checkpoint.pth

To test the VISTA on the test set, please enable the test flag in test.sh and replace the testing pkl path in dist_test.py

Pretrained model

We provide a pretrained model trained on the nuScenes dataset, the configuration is exactly the one we provide. The pretrained model can be downloaded from Google Drive. The performances of the pretrained model on validation set of nuScenes are presented down below (Double Flip Enabled).

mAP NDS Car AP Truck AP Bus AP Trailer AP
62.83 69.52 85.93 60.73 68.40 41.42
Cons Vehicle AP Pedestrian AP Motorcycle AP Bicycle AP Traffic Cone AP Barrier AP
23.50 85.40 70.20 55.53 71.47 65.84

Acknowlegement

This repo is built upon several opensourced codebases, shout out to them for their amazing works.

Citation

If you find this work useful in your research, please cite

@inproceedings{deng2022vista,
  title={VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention},
  author={Deng, Shengheng and Liang, Zhihao and Sun, Lin and Jia, Kui},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Bugs

If you find any bugs in this repo, please let me know!

Owner
Research lab focusing on CV, ML, and AI
Runs macOS on linux with qemu.

mac-on-linux-with-qemu Runs macOS on linux with qemu. Pre-requisites qemu-system-x86_64 dmg2img pulseaudio python[click] Usage After cloning the repos

Arindam Das 177 Dec 26, 2022
A Red Team tool for exfiltrating sensitive data from Jira tickets.

Jir-thief This Module will connect to Jira's API using an access token, export to a word .doc, and download the Jira issues that the target has access

Antonio Piazza 82 Dec 12, 2022
Program Input Data Mahasiswa Oop

PROGRAM INPUT NILAI MAHASISWA MENGGUNAKAN OOP PENGERTIAN OOP object-oriented-programing/OOP adalah paradigma pemrograman berdasarkan konsep "objek", y

Maulana Reza Badrudin 1 Jan 05, 2022
Darkflame Universe Account Manager

Darkflame Universe Account Manager This is a quick and simple web application intended for account creation and management for a DLU instance created

31 Nov 29, 2022
Nick Craig-Wood's Website

Nick Craig-Wood's public website This directory tree is used to build all the different docs for Nick Craig-Wood's website. The content here is (c) Ni

Nick Craig-Wood 2 Sep 02, 2022
dbt adapter for Firebolt

dbt-firebolt dbt adapter for Firebolt dbt-firebolt supports dbt 0.21 and newer Installation First, download the JDBC driver and place it wherever you'

23 Dec 14, 2022
Async-first dependency injection library based on python type hints

Dependency Depression Async-first dependency injection library based on python type hints Quickstart First let's create a class we would be injecting:

Doctor 8 Oct 10, 2022
A general purpose low level programming language written in Python.

A general purpose low level programming language written in Python. Basal is an easy mid level programming language compiling to C. It has an easy syntax, similar to Python, Rust etc.

Snm Logic 6 Mar 30, 2022
Spartan implementation of H.O.T.T.

Down The Path I was walking down the line, Trying to find some peace of mind. Then I saw you, You were takin' it slow, And walkin' it one step at a ti

Trebor Huang 25 Aug 05, 2022
Convert Beat Saber maps to Tesla light shows!

Tesla x Beat Saber - Light Show Converter Convert Beat Saber maps to Tesla light shows! This project requires FFMPEG and all packages from requirement

HLVM 20 Dec 21, 2022
A tool to determine optimal projects for Gridcoin crunchers. Maximize your magnitude!

FindTheMag FindTheMag helps optimize your BOINC client for Gridcoin mining. You can group BOINC projects into two groups: "preferred" projects and "mi

7 Oct 04, 2022
A set of tools for ripping music from Konami mobile games

Konami Mobile Ripping Toolset A set of tools for ripping music from Konami mobile games Contents nigger.py for niggering konami's website, ripping all

5 Oct 20, 2022
jmespath.rs Python binding

rjmespath-py jmespath.rs Python binding.

messense 3 Dec 14, 2022
Virtual Assistant Using Python

-Virtual-Assistant-Using-Python Virtual desktop assistant is an awesome thing. If you want your machine to run on your command like Jarvis did for Ton

Bade om 1 Nov 13, 2021
AIO solution for SSIS students

ssis.bit AIO solution for SSIS students Hardware CircuitPython supports more than 200 different boards. Locally available is the TTGO T8 ESP32-S2 ST77

3 Jun 05, 2022
This is a practice on Airflow, which is building virtual env, installing Airflow and constructing data pipeline (DAGs)

airflow-test This is a practice on Airflow, which is Builing virtualbox env and setting Airflow on that env Installing Airflow using python virtual en

Jaeyoung 1 Nov 01, 2021
Pre-1.0 door/chest sound injector for Minecraft

doorjector Pre-1.0 door/chest sound injector for Minecraft. While the game is running, doorjector hotswaps the new sounds for the old right before the

Sam 1 Nov 20, 2021
A code to clean and extract a bib file based on keywords.

These are two scripts I use to generate clean bib files. clean_bibfile.py: Removes superfluous fields (which are not included in fields_to_keep.json)

Antoine Allard 4 May 16, 2022
A dot matrix rendered using braille characters.

⣿ dotmatrix A dot matrix rendered using braille characters. Description This library provides class called Matrix which represents a dot matrix that c

Tim Fischer 25 Dec 12, 2022
An application to see if your Ethereum staking validator(s) are members of the current or next post-Altair sync committees.

eth_sync_committee.py Since the Altair upgrade, 512 validators are randomly chosen every 256 epochs (~27 hours) to form a sync committee. Validators i

4 Oct 27, 2022