基于DouZero定制AI实战欢乐斗地主

Overview

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战

Logo

  • 本项目基于DouZero
  • 环境配置请移步项目DouZero
  • 模型默认为WP,更换模型请修改start.py中的模型路径
  • 运行main.py即可
  • SL (baselines/sl/): 基于人类数据进行深度学习的预训练模型
  • DouZero-ADP (baselines/douzero_ADP/): 以平均分数差异(Average Difference Points, ADP)为目标训练的Douzero智能体
  • DouZero-WP (baselines/douzero_WP/): 以胜率(Winning Percentage, WP)为目标训练的Douzero智能体

说明

  • 将玩家角色设置为AI,需开局时手动输入玩家角色、初始手牌、三张底牌
  • 每轮手动输入其他两位玩家出的牌,AI给出出牌建议以及预计胜率
  • 暂未设计可视化界面,正考虑通过截屏自动识别开局手牌。
  • 欢乐斗地主窗口模式最大化运行,屏幕分辨率1920x1080。由于设计像素级操作,运行出错请检查截图区域坐标(位于MyPyQT_Form类中的__init__函数内)
  • 窗口移至右下角,避免遮挡手牌,历史牌,底牌区域。

使用步骤

  1. 确认环境正常,等待手牌出现、底牌出现、地主角色确认后,点击开始,耗时几秒完成识别。
  2. 窗口内显示识别结果,地主角色使用淡红色标出。识别完成自动开始记录出牌。
  3. 观察AI建议的出牌,在游戏中手动选择并打出。
  4. 游戏结束后弹出对话框提示输赢。
  5. 识别错误或无反应可通过结束按钮停止本局。至于游戏,就自己手动打完吧。

潜在Bug

  • 王炸时出牌特效时间较长,有一定几率导致只能识别出一个王。

鸣谢

  • 本项目基于DouZero
  • 借鉴了cardRecorder项目的部分代码以及模板图片,用于识别扑克牌

相关链接

Comments
  • 请问这是我的设置问题吗

    请问这是我的设置问题吗

    我首先按照要求安装了所需依赖,进入对局点击开始后提示输出

    等待下家出牌 等待下家出牌 等待下家出牌

    下家出牌: 44333 Traceback (most recent call last): File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 170, in init_cards self.start() File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 226, in start
    self.env.step(self.user_position, self.other_played_cards_env) TypeError: step() takes 1 positional argument but 3 were given

    以上这样的报错 图形界面卡死,图片附上

    report

    opened by jiahao2333 4
  • 开始以后闪退

    开始以后闪退

    看记录好像能识别出手牌,麻烦帮忙看看是为什么

    F:\Desktop\DouZero_For_HappyDouDiZhu-2.0>python main.py {'three_landlord_cards': [9, 8, 3], 'landlord_up': [17, 17, 14, 14, 13, 13, 12, 12, 10, 9, 8, 7, 7, 6, 5, 4, 3], 'landlord': [9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 17, 17, 20, 30], 'landlord_down': [3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8]} Traceback (most recent call last): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 83, in refresh() File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 73, in refresh if not Git.refresh(path=path): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git\cmd.py", line 287, in refresh raise ImportError(err) ImportError: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "main.py", line 164, in init_cards ai_players[1] = DeepAgent(self.user_position, self.card_play_model_path_dict[self.user_position]) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 25, in init self.model = load_model(position, model_path) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 7, in load_model from douzero.dmc.models import model_dict File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc_init.py", line 1, in from .dmc import train File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\dmc.py", line 12, in from .file_writer import FileWriter File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\file_writer.py", line 25, in import git File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init.py", line 85, in raise ImportError('Failed to initialize: {0}'.format(exc)) ImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    opened by 0xbba 3
  • 区域坐标能否解答下?

    区域坐标能否解答下?

    self.MyHandCardsPos = (414, 804, 1041, 59)  # 我的截图区域
            self.LPlayedCardsPos = (530, 470, 380, 160)  # 左边截图区域
            self.RPlayedCardsPos = (1010, 470, 380, 160)  # 右边截图区域
            self.LandlordFlagPos = [(1320, 300, 110, 140), (320, 720, 110, 140), (500, 300, 110, 140)]  # 地主标志截图区域(右-我-左)
            self.ThreeLandlordCardsPos = (817, 36, 287, 136)      # 地主底牌截图区域,resize成349x168
    

    我怎么用坐标拾取工具对比了下发现完全不对

    opened by daofeng2015 1
  • 由于分辨率导致的牌面识别瓶颈改进意见

    由于分辨率导致的牌面识别瓶颈改进意见

    使用win32gui库对游戏窗口进行坐标(0,0)、尺寸(默认尺寸)自动固定,如下: win32gui.SetWindowPos(hwnd, win32con.HWND_NOTOPMOST, 0, 0, 1440, 838, win32con.SWP_SHOWWINDOW)

    然后在此基础上制作配套pics,可极大降低由分辨率问题引起的各类找图问题。

    opened by null119 0
  • pos_duge报错

    pos_duge报错

    [ WARN:[email protected]] global D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp (239) cv::findDecoder imread_('QQ截图20220507102631.png'): can't open/read file: check file path/integrity Traceback (most recent call last): File "G:/python/code_py/douzero_huanledoudizhu/DouZero_For_HappyDouDiZhu/pos_debug.py", line 25, in cv2.imshow("test", img) cv2.error: OpenCV(4.5.5) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor' 想问一下这是什么情况

    opened by fengmianchen 0
Releases(v2.0)
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023