Privacy-Preserving Portrait Matting [ACM MM-21]

Overview

Privacy-Preserving Portrait Matting [ACM MM-21]

This is the official repository of the paper Privacy-Preserving Portrait Matting.

Jizhizi Li, Sihan Ma, Jing Zhang, and Dacheng Tao

Introduction | PPT and P3M-10k | P3M-Net | Benchmark | Results | Train and Test | Inference code | Statement


📮 News

[2021-11-21]: Publish the dataset P3M-10k (the largest privacy-preserving portrait matting dataset, contains 10421 high-resolution real-world face-blurred portrait images and the manually labeled alpha mattes.), the train code and the test code. The dataset P3M-10k can be accessed from the following link, please make sure that you have read and agreed to the agreement. The train code and test code can be viewed from this code-base page.

[2021-12-06]: Publish the face mask of the training set and P3M-500-P validation set of P3M-10k dataset.

Dataset

Dataset Link
(Google Drive)

Dataset Link
(Baidu Wangpan 百度网盘)

Dataset Release Agreement
P3M-10k Link Link (pw: fgmc) Agreement (MIT License)
P3M-10k facemask (optional) Link Link (pw: f772) Agreement (MIT License)

[2021-11-20]: Publish the inference code and the pretrained model (Google Drive | Baidu Wangpan (pw: 2308)) that can be used to test on your own privacy-preserving or normal portrait images. Some test results on P3M-10k can be viewed from this demo page.

Introduction

Recently, there has been an increasing concern about the privacy issue raised by using personally identifiable information in machine learning. However, previous portrait matting methods were all based on identifiable portrait images.

To fill the gap, we present P3M-10k in this paper, which is the first large-scale anonymized benchmark for Privacy-Preserving Portrait Matting. P3M-10k consists of 10,000 high-resolution face-blurred portrait images along with high-quality alpha mattes. We systematically evaluate both trimap-free and trimap-based matting methods on P3M-10k and find that existing matting methods show different generalization capabilities when following the Privacy-Preserving Training (PPT) setting, 𝑖.𝑒., training on face-blurred images and testing on arbitrary images.

To devise a better trimap-free portrait matting model, we propose P3M-Net, which leverages the power of a unified framework for both semantic perception and detail matting, and specifically emphasizes the interaction between them and the encoder to facilitate the matting process. Extensive experiments on P3M-10k demonstrate that P3M-Net outperforms the state-of-the-art methods in terms of both objective metrics and subjective visual quality. Besides, it shows good generalization capacity under the PPT setting, confirming the value of P3M-10k for facilitating future research and enabling potential real-world applications.

PPT Setting and P3M-10k Dataset

PPT Setting: Due to the privacy concern, we propose the Privacy-Preserving Training (PPT) setting in portrait matting, 𝑖.𝑒., training on privacy-preserved images (𝑒.𝑔., processed by face obfuscation) and testing on arbitraty images with or without privacy content. As an initial step towards privacy-preserving portrait matting problem, we only define the identifiable faces in frontal and some profile portrait images as the private content in this work.

P3M-10k Dataset: To further explore the effect of PPT setting, we establish the first large-scale privacy-preserving portrait matting benchmark named P3M-10k. It contains 10,000 annonymized high-resolution portrait images by face obfuscation along with high-quality ground truth alpha mattes. Specifically, we carefully collect, filter, and annotate about 10,000 high-resolution images from the Internet with free use license. There are 9,421 images in the training set and 500 images in the test set, denoted as P3M-500-P. In addition, we also collect and annotate another 500 public celebrity images from the Internet without face obfuscation, to evaluate the performance of matting models under the PPT setting on normal portrait images, denoted as P3M-500-NP. We show some examples as below, where (a) is from the training set, (b) is from P3M-500-P, and (c) is from P3M-500-NP.

P3M-10k and the facemask are now published!! You can get access to it from the following links, please make sure that you have read and agreed to the agreement. Note that the facemask is not used in our work. So it's optional to download it.

Dataset

Dataset Link
(Google Drive)

Dataset Link
(Baidu Wangpan 百度网盘)

Dataset Release Agreement
P3M-10k Link Link (pw: fgmc) Agreement (MIT License)
P3M-10k facemask (optional) Link Link (pw: f772) Agreement (MIT License)

P3M-Net

Our proposed P3M-Net consists of four parts

  • A Multi-task Framework: To enable benefits from explicitly modeling both semantic segmentation and detail matting tasks and jointly optimizing for trimap-free matting, we follow [1] and [2], adopt a multi-task framework based on a modified version of ResNet-34, the model pretrained on ImageNet will be listed as follows;

  • TFI: Tripartite-Feature Integration: TFI module is used in each matting decoder block to model the interaction between encoder, segmentation decoder, and the matting decoder. TFI has three inputs, the feature map of the previous matting decoder block, the feature map from the same level semantic decoder block, and the feature map from the symmetrical encoder block. TFI passes them through a projection layer, concats the outputs and feeds into a convolutional block to generate the output feature;

  • sBFI: Shallow Bipartite-Feature Integration: sBFI module is used to model the interaction between the encoder and matting decoder. sBFI adopts the feature map from the first encoder block as a guidance to refine the output feature map from previous matting decoder block since shallow layers in the encoder contain many details and local structural information;

  • dBFI: Deep Bipartite-Feature Integration: dBFI module is used to model the interaction between the encoder and segmentation decoder. dBFI adopts the feature map from the last encoder block as a guidance for the semantic decoder since it contains abundant global semantics. Specifically, dBFI fuses the feature map from the last encoder with the ones from semantic decoder to improve the feature representation ability for the high-level semantic segmentation task.

Here we provide the model we pretrained on P3M-10k and the backbone we pretrained on ImageNet.

Model Pretrained Backbone on ImageNet Pretrained P3M-NET on P3M-10k
Google Drive Link Link

Baidu Wangpan
(百度网盘)

Link
(pw: 2v1t)

Link
(pw: 2308)

Benchmark

A systematic evaluation of the existing trimap-based and trimap-free matting methods on P3M-10k is conducted to investigate the impact of the privacy-preserving training (PPT) setting on different matting models and gain some useful insights. Part of the results are shown as below. Please refer to the paper for full tables.

In the following tables, "B" denotes the blurred images, and "N" denotes the normal images. "B:N" denotes training on blurred images while testing on normal images, vice versa.

Table 1. Results of trimap-based deep learning methods on P3M-500-P.
Setting B:B B:N N:B N:N
Method SAD MSE SAD MSE SAD MSE SAD MSE
DIM 4.8906 0.0115 4.8940 0.0116 4.8050 0.0116 4.7941 0.0116
AlphaGAN 5.2669 0.0112 5.2367 0.0112 5.7060 0.0120 5.6696 0.0119
GCA 4.3593 0.0088 4.3469 0.0089 4.4068 0.0089 4.4002 0.0089
IndexNet 5.1959 0.0156 5.2188 0.0158 5.8267 0.0202 5.8509 0.0204
FBA 4.1330 0.0088 4.1267 0.0088 4.1666 0.0086 4.1544 0.0086
Table 2. Results of trimap-free methods on P3M-500-P.
Setting B:B B:N N:B N:N
Method SAD MSE SAD MSE SAD MSE SAD MSE
SHM 21.56 0.0100 24.33 0.0116 23.91 0.0115 17.13 0.0075
LF 42.95 0.0191 30.84 0.0129 41.01 0.0174 31.22 0.0123
HATT 25.99 0.0054 26.5 0.0055 35.02 0.0103 22.93 0.0040
GFM 13.20 0.0050 13.08 0.0050 13.54 0.0048 10.73 0.0033
BASIC 15.13 0.0058 15.52 0.0060 24.38 0.0109 14.52 0.0054
P3M-Net (Ours) 8.73 0.0026 9.22 0.0028 11.22 0.0040 9.06 0.0028

Results

We test our network on our proposed P3M-500-P and P3M-500-NP and compare with previous SOTA methods, we list the results as below. More results on P3M-10k test set can be found here.

Inference Code - How to Test on Your Images

Here we provide the procedure of testing on sample images by our pretrained model:

  1. Setup environment following this instruction page;

  2. Insert the path REPOSITORY_ROOT_PATH in the file core/config.py;

  3. Download the pretrained P3M-Net model from here (Google Drive|Baidu Wangpan (pw: 2308)) and unzip to the folder models/pretrained/;

  4. Save your sample images in folder samples/original/.;

  5. Setup parameters in the file scripts/test_samples.sh and run by:

    chmod +x scripts/test_samples.sh

    scripts/test_samples.sh;

  6. The results of alpha matte and transparent color image will be saved in folder samples/result_alpha/. and samples/result_color/..

We show some sample images, the predicted alpha mattes, and their transparent results as below. We use the pretrained model from section Network with Hybrid (1 & 1/2) test strategy.

Statement

If you are interested in our work, please consider citing the following:

@inproceedings{10.1145/3474085.3475512,
author = {Li, Jizhizi and Ma, Sihan and Zhang, Jing and Tao, Dacheng},
title = {Privacy-Preserving Portrait Matting},
year = {2021},
isbn = {9781450386517},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3474085.3475512},
doi = {10.1145/3474085.3475512},
booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
pages = {3501–3509},
numpages = {9},
keywords = {trimap, benchmark, portrait matting, deep learning, semantic segmentation, privacy-preserving},
location = {Virtual Event, China},
series = {MM '21}
}

This project is under MIT licence.

For further questions, please contact Jizhizi Li at [email protected] or Sihan Ma at [email protected].

Relevant Projects

[1] Bridging Composite and Real: Towards End-to-end Deep Image Matting, IJCV, 2021 | Paper | Github
     Jizhizi Li, Jing Zhang, Stephen J. Maybank, Dacheng Tao

[2] Deep Automatic Natural Image Matting, IJCAI, 2021 | Paper | Github
     Jizhizi Li, Jing Zhang, and Dacheng Tao

Owner
Jizhizi_Li
Ph.D. student at the University of Sydney - Artificial Intelligence
Jizhizi_Li
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023