Charsiu: A transformer-based phonetic aligner

Related tags

Deep Learningcharsiu
Overview

Charsiu: A transformer-based phonetic aligner [arXiv]

Note. This is a preview version. The aligner is under active development. New functions, new languages and detailed documentation will be added soon!

Intro

Charsiu is a phonetic alignment tool, which can:

  • recognise phonemes in a given audio file
  • perform forced alignment using phone transcriptions created in the previous step or provided by the user.
  • directly predict the phone-to-audio alignment from audio (text-independent alignment)

Fun fact: Char Siu is one of the most representative dishes of Cantonese cuisine 🍲 (see wiki).

Tutorial (In progress)

You can directly run our model in the cloud via Google Colab!

  • Forced alignment: Open In Colab
  • Textless alignmnet: Open In Colab

Development plan

  • Package
Items Progress
Documentation Nov 2021
Textgrid support Nov 2021
Model compression TBD
  • Multilingual support
Language Progress
English (American)
Mandarin Chinese Nov 2021
Spanish Dec 2021
English (British) TBD
Cantonese TBD
AAVE TBD

Pretrained models

Our pretrained models are availble at the HuggingFace model hub: https://huggingface.co/charsiu.

Dependencies

pytorch
transformers
datasets
librosa
g2pe
praatio

Training

Coming soon!

Finetuning

Coming soon!

Attribution and Citation

For now, you can cite this tool as:

@article{zhu2019charsiu,
  title={Phone-to-audio alignment without text: A Semi-supervised Approach},
  author={Zhu, Jian and Zhang, Cong and Jurgens, David},
  journal={arXiv preprint arXiv:????????????????????},
  year={2021}
 }

Or

To share a direct web link: https://github.com/lingjzhu/charsiu/.

References

Transformers
s3prl
Montreal Forced Aligner

Disclaimer

This tool is a beta version and is still under active development. It may have bugs and quirks, alongside the difficulties and provisos which are described throughout the documentation. This tool is distributed under MIT liscence. Please see license for details.

By using this tool, you acknowledge:

  • That you understand that this tool does not produce perfect camera-ready data, and that all results should be hand-checked for sanity's sake, or at the very least, noise should be taken into account.

  • That you understand that this tool is a work in progress which may contain bugs. Future versions will be released, and bug fixes (and additions) will not necessarily be advertised.

  • That this tool may break with future updates of the various dependencies, and that the authors are not required to repair the package when that happens.

  • That you understand that the authors are not required or necessarily available to fix bugs which are encountered (although you're welcome to submit bug reports to Jian Zhu ([email protected]), if needed), nor to modify the tool to your needs.

  • That you will acknowledge the authors of the tool if you use, modify, fork, or re-use the code in your future work.

  • That rather than re-distributing this tool to other researchers, you will instead advise them to download the latest version from the website.

... and, most importantly:

  • That neither the authors, our collaborators, nor the the University of Michigan or any related universities on the whole, are responsible for the results obtained from the proper or improper usage of the tool, and that the tool is provided as-is, as a service to our fellow linguists.

All that said, thanks for using our tool, and we hope it works wonderfully for you!

Support or Contact

Please contact Jian Zhu ([email protected]) for technical support.
Contact Cong Zhang ([email protected]) if you would like to receive more instructions on how to use the package.

Owner
jzhu
Michigan Linguistics
jzhu
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Syed Waqas Zamir 906 Dec 30, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023