Python Machine Learning Jupyter Notebooks (ML website)

Overview

License GitHub forks GitHub stars PRs Welcome

Python Machine Learning Jupyter Notebooks (ML website)

Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here)

ml-ds


Also check out these super-useful Repos that I curated

Requirements

  • Python 3.6+
  • NumPy (pip install numpy)
  • Pandas (pip install pandas)
  • Scikit-learn (pip install scikit-learn)
  • SciPy (pip install scipy)
  • Statsmodels (pip install statsmodels)
  • MatplotLib (pip install matplotlib)
  • Seaborn (pip install seaborn)
  • Sympy (pip install sympy)
  • Flask (pip install flask)
  • WTForms (pip install wtforms)
  • Tensorflow (pip install tensorflow>=1.15)
  • Keras (pip install keras)
  • pdpipe (pip install pdpipe)

You can start with this article that I wrote in Heartbeat magazine (on Medium platform):

"Some Essential Hacks and Tricks for Machine Learning with Python"

Essential tutorial-type notebooks on Pandas and Numpy

Jupyter notebooks covering a wide range of functions and operations on the topics of NumPy, Pandans, Seaborn, Matplotlib etc.

Tutorial-type notebooks covering regression, classification, clustering, dimensionality reduction, and some basic neural network algorithms

Regression

  • Simple linear regression with t-statistic generation


Classification


Clustering

  • K-means clustering (Here is the Notebook)

  • Affinity propagation (showing its time complexity and the effect of damping factor) (Here is the Notebook)

  • Mean-shift technique (showing its time complexity and the effect of noise on cluster discovery) (Here is the Notebook)

  • DBSCAN (showing how it can generically detect areas of high density irrespective of cluster shapes, which the k-means fails to do) (Here is the Notebook)

  • Hierarchical clustering with Dendograms showing how to choose optimal number of clusters (Here is the Notebook)


Dimensionality reduction

  • Principal component analysis


Deep Learning/Neural Network


Random data generation using symbolic expressions


Synthetic data generation techniques

Simple deployment examples (serving ML models on web API)


Object-oriented programming with machine learning

Implementing some of the core OOP principles in a machine learning context by building your own Scikit-learn-like estimator, and making it better.

See my articles on Medium on this topic.


Unit testing ML code with Pytest

Check the files and detailed instructions in the Pytest directory to understand how one should write unit testing code/module for machine learning models


Memory and timing profiling

Profiling data science code and ML models for memory footprint and computing time is a critical but often overlooed area. Here are a couple of Notebooks showing the ideas,

Owner
Tirthajyoti Sarkar
Data Sc/Engineering manager , Industry 4.0, edge-computing, semiconductor technologist, Author, Python pkgs - pydbgen, MLR, and doepy,
Tirthajyoti Sarkar
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Magenta: Music and Art Generation with Machine Intelligence

Magenta is a research project exploring the role of machine learning in the process of creating art and music. Primarily this involves developing new

Magenta 18.1k Dec 30, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023