Message Passing on Cell Complexes

Related tags

Deep Learningcwn
Overview

CW Networks

example workflow

This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks (ICML 2021)

alt text     alt text   alt text

Graph Neural Networks (GNNs) are limited in their expressive power, struggle with long-range interactions and lack a principled way to model higher-order structures. These problems can be attributed to the strong coupling between the computational graph and the input graph structure. The recently proposed Message Passing Simplicial Networks naturally decouple these elements by performing message passing on the clique complex of the graph. Nevertheless, these models are severely constrained by the rigid combinatorial structure of Simplicial Complexes (SCs). In this work, we extend recent theoretical results on SCs to regular Cell Complexes, topological objects that flexibly subsume SCs and graphs. We show that this generalisation provides a powerful set of graph "lifting" transformations, each leading to a unique hierarchical message passing procedure. The resulting methods, which we collectively call CW Networks (CWNs), are strictly more powerful than the WL test and, in certain cases, not less powerful than the 3-WL test. In particular, we demonstrate the effectiveness of one such scheme, based on rings, when applied to molecular graph problems. The proposed architecture benefits from provably larger expressivity than commonly used GNNs, principled modelling of higher-order signals and from compressing the distances between nodes. We demonstrate that our model achieves state-of-the-art results on a variety of molecular datasets.

Installation

We use Python 3.8 and PyTorch 1.7.0 on CUDA 10.2 for this project. Please open a terminal window and follow these steps to prepare the virtual environment needed to run any experiment.

Create the environment:

conda create --name cwn python=3.8
conda activate cwn

Install dependencies:

conda install -y pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch
sh pyG_install.sh cu102
pip install -r requirements.txt
sh graph-tool_install.sh

Testing

We suggest running all tests in the repository to verify everything is in place. Run:

pytest -v .

All tests should pass. Note that some tests are skipped since they rely on external datasets or take a long time to run. We periodically run these tests manually.

Experiments

We prepared individual scripts for each experiment. The results are written in the exp/results/ directory and are also displayed in the terminal once the training is complete. Before the training starts, the scripts will download / preprocess the corresponding graph datasets and perform the appropriate graph-lifting procedure (this might take a while).

Molecular benchmarks

To run an experiment on a molecular benchmark with a CWN, execute:

sh exp/scripts/cwn-<benchmark>.sh

with <benchmark> one amongst zinc, zinc-full, molhiv.

Imposing the parameter budget: it is sufficient to add the suffix -small to the <benchmark> placeholder:

sh exp/scripts/cwn-<benchmark>-small.sh

For example, sh exp/scripts/cwn-zinc-small.sh will run the training on ZINC with parameter budget.

Distinguishing SR graphs

To run an experiment on the SR benchmark with a CWN, run:

sh exp/scripts/cwn-sr.sh <k>

replacing <k> with a value amongst 4, 5, 6 (<k> is the maximum ring size employed in the lifting procedure). The results, for each family, will be written under exp/results/SR-cwn-sr-<k>/.

The following command will run the MLP-sum (strong) baseline on the same ring-lifted graphs:

sh exp/scripts/cwn-sr-base.sh <k>

In order to run these experiment with clique-complex lifting (MPSNs), run:

sh exp/scripts/mpsn-sr.sh

Clique-lifting is applied up to dimension k-1, with k the maximum clique-size in the family.

The MLP-sum baseline on clique-complexes is run with:

sh exp/scripts/mpsn-sr-base.sh

Circular Skip Link (CSL) Experiments

To run the experiments on the CSL dataset (5 folds x 20 seeds), run the following script:

sh exp/scripts/cwn-csl.sh

Trajectory classification

For the Ocean Dataset experiments, the data must be downloaded from here. The file must be placed in datasets/OCEAN/raw/.

For running the experiments use the following scripts:

sh ./exp/scripts/mpsn-flow.sh [id/relu/tanh]
sh ./exp/scripts/mpsn-ocean.sh [id/relu/tanh]
sh ./exp/scripts/gnn-inv-flow.sh
sh ./exp/scripts/gnn-inv-ocean.sh

TUDatasets

For experiments on TUDatasets first download the raw data from here. Please place the downloaded archive on the root of the repository and unzip it (e.g. unzip ./datasets.zip).

Here we provide the scripts to run CWN on NCI109 and MPSN on REDDITBINARY. This script can be customised to run additional experiments on other datasets.

sh ./exp/scripts/cwn-nci109.sh
sh ./exp/scripts/mpsn-redditb.sh

Credits

For attribution in academic contexts, please cite the following papers

@InProceedings{pmlr-v139-bodnar21a,
  title = 	 {Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks},
  author =       {Bodnar, Cristian and Frasca, Fabrizio and Wang, Yuguang and Otter, Nina and Montufar, Guido F and Li{\'o}, Pietro and Bronstein, Michael},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {1026--1037},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
}
@article{bodnar2021b,
  title={Weisfeiler and Lehman Go Cellular: CW Networks},
  author={Bodnar, Cristian and Frasca, Fabrizio and Otter, Nina and Wang, Yu Guang and Li{\`o}, Pietro and Mont{\'u}far, Guido and Bronstein, Michael},
  journal={arXiv preprint arXiv:2106.12575},
  year={2021}
}

TODOs

  • Add support for coboundary adjacencies.
  • Refactor the way empty cochains are handled for batching.
  • Remove redundant parameters from the models (e.g. msg_up_nn in the top dimension.)
  • Refactor data classes so to remove setters for __num_xxx_cells__ like attributes.
  • Address other TODOs left in the code.
Owner
Twitter Research
Twitter #opensource projects related to our published research
Twitter Research
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022