A Time Series Library for Apache Spark

Overview

Flint: A Time Series Library for Apache Spark

The ability to analyze time series data at scale is critical for the success of finance and IoT applications based on Spark. Flint is Two Sigma's implementation of highly optimized time series operations in Spark. It performs truly parallel and rich analyses on time series data by taking advantage of the natural ordering in time series data to provide locality-based optimizations.

Flint is an open source library for Spark based around the TimeSeriesRDD, a time series aware data structure, and a collection of time series utility and analysis functions that use TimeSeriesRDDs. Unlike DataFrame and Dataset, Flint's TimeSeriesRDDs can leverage the existing ordering properties of datasets at rest and the fact that almost all data manipulations and analysis over these datasets respect their temporal ordering properties. It differs from other time series efforts in Spark in its ability to efficiently compute across panel data or on large scale high frequency data.

Documentation Status

Requirements

Dependency Version
Spark Version 2.3 and 2.4
Scala Version 2.12
Python Version 3.5 and above

How to install

Scala artifact is published in maven central:

https://mvnrepository.com/artifact/com.twosigma/flint

Python artifact is published in PyPi:

https://pypi.org/project/ts-flint

Note you will need both Scala and Python artifact to use Flint with PySpark.

How to build

To build from source:

Scala (in top-level dir):

sbt assemblyNoTest

Python (in python subdir):

python setup.py install

or

pip install .

Python bindings

The python bindings for Flint, including quickstart instructions, are documented at python/README.md. API documentation is available at http://ts-flint.readthedocs.io/en/latest/.

Getting Started

Starting Point: TimeSeriesRDD and TimeSeriesDataFrame

The entry point into all functionalities for time series analysis in Flint is TimeSeriesRDD (for Scala) and TimeSeriesDataFrame (for Python). In high level, a TimeSeriesRDD contains an OrderedRDD which could be used to represent a sequence of ordering key-value pairs. A TimeSeriesRDD uses Long to represent timestamps in nanoseconds since epoch as keys and InternalRows as values for OrderedRDD to represent a time series data set.

Create TimeSeriesRDD

Applications can create a TimeSeriesRDD from an existing RDD, from an OrderedRDD, from a DataFrame, or from a single csv file.

As an example, the following creates a TimeSeriesRDD from a gzipped CSV file with header and specific datetime format.

import com.twosigma.flint.timeseries.CSV
val tsRdd = CSV.from(
  sqlContext,
  "file://foo/bar/data.csv",
  header = true,
  dateFormat = "yyyyMMdd HH:mm:ss.SSS",
  codec = "gzip",
  sorted = true
)

To create a TimeSeriesRDD from a DataFrame, you have to make sure the DataFrame contains a column named "time" of type LongType.

import com.twosigma.flint.timeseries.TimeSeriesRDD
import scala.concurrent.duration._
val df = ... // A DataFrame whose rows have been sorted by their timestamps under "time" column
val tsRdd = TimeSeriesRDD.fromDF(dataFrame = df)(isSorted = true, timeUnit = MILLISECONDS)

One could also create a TimeSeriesRDD from a RDD[Row] or an OrderedRDD[Long, Row] by providing a schema, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val rdd = ... // An RDD whose rows have sorted by their timestamps
val tsRdd = TimeSeriesRDD.fromRDD(
  rdd,
  schema = Schema("time" -> LongType, "price" -> DoubleType)
)(isSorted = true,
  timeUnit = MILLISECONDS
)

It is also possible to create a TimeSeriesRDD from a dataset stored as parquet format file(s). The TimeSeriesRDD.fromParquet() function provides the option to specify which columns and/or the time range you are interested, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val tsRdd = TimeSeriesRDD.fromParquet(
  sqlContext,
  path = "hdfs://foo/bar/"
)(isSorted = true,
  timeUnit = MILLISECONDS,
  columns = Seq("time", "id", "price"),  // By default, null for all columns
  begin = "20100101",                    // By default, null for no boundary at begin
  end = "20150101"                       // By default, null for no boundary at end
)

Group functions

A group function is to group rows with nearby (or exactly the same) timestamps.

  • groupByCycle A function to group rows within a cycle, i.e. rows with exactly the same timestamps. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1000L 2.0
// 2000L 3.0
// 2000L 4.0
// 2000L 5.0

val results = priceTSRdd.groupByCycle()
// time  rows
// ------------------------------------------------
// 1000L [[1000L, 1.0], [1000L, 2.0]]
// 2000L [[2000L, 3.0], [2000L, 4.0], [2000L, 5.0]]
  • groupByInterval A function to group rows whose timestamps fall into an interval. Intervals could be defined by another TimeSeriesRDD. Its timestamps will be used to defined intervals, i.e. two sequential timestamps define an interval. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val clockTSRdd = ...
// A TimeSeriesRDD with only column "time"
// time
// -----
// 1000L
// 2000L
// 3000L

val results = priceTSRdd.groupByInterval(clockTSRdd)
// time  rows
// ----------------------------------
// 1000L [[1000L, 1.0], [1500L, 2.0]]
// 2000L [[2000L, 3.0], [2500L, 4.0]]
  • addWindows For each row, this function adds a new column whose value for a row is a list of rows within its window.
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val result = priceTSRdd.addWindows(Window.pastAbsoluteTime("1000ns"))
// time  price window_past_1000ns
// ------------------------------------------------------
// 1000L 1.0   [[1000L, 1.0]]
// 1500L 2.0   [[1000L, 1.0], [1500L, 2.0]]
// 2000L 3.0   [[1000L, 1.0], [1500L, 2.0], [2000L, 3.0]]
// 2500L 4.0   [[1500L, 2.0], [2000L, 3.0], [2500L, 4.0]]

Temporal Join Functions

A temporal join function is a join function defined by a matching criteria over time. A tolerance in temporal join matching criteria specifies how much it should look past or look futue.

  • leftJoin A function performs the temporal left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, append the most recent row from the right at or before the same time. An example to join two TimeSeriesRDDs is as follows.
val leftTSRdd = ...
val rightTSRdd = ...
val result = leftTSRdd.leftJoin(rightTSRdd, tolerance = "1day")
  • futureLeftJoin A function performs the temporal future left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, appends the closest future row from the right at or after the same time.
val result = leftTSRdd.futureLeftJoin(rightTSRdd, tolerance = "1day")

Summarize Functions

Summarize functions are the functions to apply summarizer(s) to rows within a certain period, like cycle, interval, windows, etc.

  • summarizeCycles A function computes aggregate statistics of rows that are within a cycle, i.e. rows share a timestamp.
val volTSRdd = ...
// A TimeSeriesRDD with columns "time", "id", and "volume"
// time  id volume
// ------------
// 1000L 1  100
// 1000L 2  200
// 2000L 1  300
// 2000L 2  400

val result = volTSRdd.summarizeCycles(Summary.sum("volume"))
// time  volume_sum
// ----------------
// 1000L 300
// 2000L 700

Similarly, we could summarize over intervals, windows, or the whole time series data set. See

  • summarizeIntervals
  • summarizeWindows
  • addSummaryColumns

One could check timeseries.summarize.summarizer for different kinds of summarizer(s), like ZScoreSummarizer, CorrelationSummarizer, NthCentralMomentSummarizer etc.

Contributing

In order to accept your code contributions, please fill out the appropriate Contributor License Agreement in the cla folder and submit it to [email protected].

Disclaimer

Apache Spark is a trademark of The Apache Software Foundation. The Apache Software Foundation is not affiliated, endorsed, connected, sponsored or otherwise associated in any way to Two Sigma, Flint, or this website in any manner.

© Two Sigma Open Source, LLC

Owner
Two Sigma
Two Sigma is a financial sciences company. Our scientists use rigorous inquiry, data analysis, and invention to solve tough challenges across financial services
Two Sigma
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022