OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

Related tags

Deep Learningobg_fcn
Overview

OBG-FCN

This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742

Object Boundary Guided Semantic Segmentation
Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu, C.-C. Jay Kuo
arXiv:1603.09742

the paper claimed to achieve 87.5% mean IU in PASCAL VOC 2011 validation set with only the training images of VOC 2011 training set.

The code is based on the repository of https://github.com/shelhamer/fcn.berkeleyvision.org, which contains the offical code for the paper:

Fully Convolutional Models for Semantic Segmentation
Jonathan Long*, Evan Shelhamer*, Trevor Darrell
CVPR 2015
arXiv:1411.4038

The implementation is just for test and could not achieve result close to Object Boundary Guided Semantic Segmentation so far. Any suggestion is more than welcome

Mdoels are trained using extra data from Hariharan et al., but excluding SBD val. Mdoels are tested using aug_val set by excluding the overlapping images in VOC train_val dataset.

Here is the result so far:

  • [FCN-32s sbd]: mean IU 0.601230112927 on aug_val
  • [FCN-16s sbd]: mean IU 0.623964674094 on aug_val
  • [FCN-8s sbd]: mean IU 0.625525553796 on aug_val
  • [FCN-16s OBG-8s sbd]: mean IU 0.628746446579 on aug_val
  • [FCN-8s OBG-8s sbd]: mean IU 0.630523623869 on aug_val
  • [FCN-8s OBG-4s sbd]: mean IU 0.593030120308 on aug_val
  • [FCN-8s OBG-2s sbd]: mean IU 0.577085377376 on aug_val

model link:

There must be major bugs in the implementation since the performace decreased when combining pool2 and pool1 for object boundary.

Owner
Jiu XU
Computer Vision Engineering Manager @ Apple
Jiu XU
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
YOLOv7 - Framework Beyond Detection

๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ

JinTian 3k Jan 01, 2023
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs ยป Report Bug ยท Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
202 Jan 06, 2023
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10ร— Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021