Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.

Overview

Deep-FIR Codebase - Super Resolution Meta Attention Networks macOS Linux Windows License: GPL v3

About

This repository contains the main coding framework accompanying our work on meta-attention in Single Image Super-Resolution (SISR), which has been published in the IEEE Signal Processing Letters (SPL) here. A sample of the results obtained by our metadata-enhanced models is provided below:

training_system

Installation

Python and Virtual Environments

If installing from scratch, it is first recommended to set up a new Python virtual environment prior to installing this code. With Conda, this can be achieved through the following:

conda create -n *environment_name* python=3.7 (Python 3.7 recommended but not essential).

conda activate *environment_name*

Code testing was conducted in Python 3.7, but the code should work fine with Python 3.6+.

Local Installation

Run the following commands from the repo base directory to fully install the package and all requirements:

cd Code

If using CPU only: conda install --file requirements.txt --channel pytorch --channel conda-forge

If using CPU + GPU: First install Pytorch and Cudatoolkit for your specific configuration using instructions here. Then, install requirements as above.

If using Aim for metrics logging, install via pip install aim. The Aim GUI does not work on Windows, but metrics should still be logged in the .aim folder.

Finally:

pip install -e . This installs all the command-line functions from Code/setup.py.

All functionality has been tested on Linux (CPU & GPU), Mac OS (CPU) and Windows (CPU & GPU).

Requirements installation is only meant as a guide and all requirements can be installed using alternative means (e.g. using pip).

Guidelines for Generating SR Data

Setting up CelebA Dataset

Create a folder 'celeba' in the Data directory. In here, download all files from the celeba source.
Unpack all archives in this location. Run image_manipulate to generate LR images and corresponding metadata (check details in Documentation/data_prep.md for more info on how to do this).

Setting up CelebA-HQ Dataset

CelebA-HQ files can be easily downloaded from here. To generate LR images, check Documentation/data_prep.md as with CelebA. For our IEEE SPL paper (super-resolving by 4x), we generated images using the following two commands:

To generate 512x512 HR images: image_manipulate --source_dir *path_to_original_images* --output_dir *path_to_new_folder* --pipeline downscale --scale 2

To generate 128x128 LR images: image_manipulate --source_dir *path_to_512x512_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

To generate pre-upscaled 512x512 LR images for SPARNet: image_manipulate --source_dir *path_to_128x128_images* --output_dir *path_to_new_folder* --pipeline upscale --scale 4

Setting up DIV2K/Flickr2K Datasets

DIV2K training/validation downloadable from here.
Flickr2K dataset downloadable from here.

Similar to CelebA-HQ, for our IEEE SPL paper (super-resolving by 4x), we generated LR images using the following command:

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale --scale 4

For blurred & compressed images, we used the following command (make sure to first install JM to be able to compress the images, as detailed here):

image_manipulate --source_dir *path_to_original_HR_images* --output_dir *path_to_new_folder* --pipeline blur-downscale-jm_compress --scale 4 --random_compression

Setting up SR testing Datasets

All SR testing datasets are available for download from the LapSRN main page here. Generate LR versions of each image using the same commands as used for the DIV2K/Flickr2K datasets.

Additional Options

Further detail on generating LR data provided in Documentation/data_prep.md.

Training/Evaluating Models

Training

To train models, prepare a configuration file (details in Documentation/model_training.md) and run:

train_sisr --parameters *path_to_config_file*

Evaluation

Similarly, for evaluation, prepare an eval config file (details in Documentation/model_eval.md) and run:

eval_sisr --config *path_to_config_file*

Standard SISR models available (code for each adapted from their official repository - linked within source code):

  1. SRCNN
  2. VDSR
  3. EDSR
  4. RCAN
  5. SPARNet
  6. SFTMD
  7. SRMD
  8. SAN
  9. HAN

Custom models available (all meta-models are marked with a Q-):

  1. Q-RCAN (meta-RCAN)
  2. Q-EDSR
  3. Q-SAN
  4. Q-HAN
  5. Q-SPARNet
  6. Various SFTMD variants (check SFTMD architectures file for options)

IEEE SPL Pre-Trained Model Weights

All weights for the models presented in our paper are available for download here. The models are split into three folders:

  • Models trained on blurry general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled images. These include:
    • SRMD
    • SFTMD
    • RCAN
    • EDSR
    • SAN
    • HAN
    • Meta-RCAN
    • Meta-EDSR
    • Meta-SAN
    • Meta-HAN
  • Models trained on blurry and compressed general images: These models were all trained on DIV2K/Flickr2K blurred/downsampled/compressed images. These include:
    • RCAN
    • Meta-RCAN (accepting blur kernel data only)
    • Meta-RCAN (accepting compression QPI data only)
    • Meta-RCAN (accepting both blur kernels and compression QPI)
  • Models trained on blurry face images: These models were all trained on CelebA-HQ blurred/downsampled images. These include:
    • RCAN
    • SPARNet (note that SPARNET only accepts pre-upsampled images)
    • Meta-RCAN
    • Meta-SPARNet
  • Testing config files for all of these models are available in Documentation/SPL_testing_files. To use these, you need to first download and prepare the relevant datasets as shown here. Place the downloaded model folders in ./Results to use the config files as is, or adjust the model_loc parameter to point towards the directory containing the models.

Once downloaded, these models can be used directly with the eval command (```eval_sisr``) on any other input dataset as discussed in the evaluation documentation (Documentation/model_eval.md).

Replicating SPL Results from Scratch

All training config files for models presented in our SPL paper are provided in Documentation/sample_config_files. These configurations assume that your training/eval data is stored in the relevant directory within ./Data, so please check that you have downloaded and prepared your datasets (as detailed above) before training.

Additional/Advanced Setup

Setting up JM (for compressing images)

Download the reference software from here. Place the software in the directory ./JM. cd into this directory and compile the software using the commands . unixprep.sh and make. Some changes might be required for different OS versions.
To compress images, simply add the jm_compress argument when specifying image_manipulate's pipeline.

Setting up VGGFace (Pytorch)

Download pre-trained weights for the VGGFace model from here (scroll to VGGFace). Place the weights file in the directory ./external_packages/VGGFace/. The weights file should be called vgg_face_dag.pth.

Setting up lightCNN

Download pre-trained weights for the lightCNN model from here (LightCNN-29 v1). Place the weights file in the directory ./external_packages/LightCNN/. The weights file should be called LightCNN_29Layers_checkpoint.pth.tar.

Creating Custom Models

Information on how to develop and train your own models is available in Documentation/framework_development.md.

Full List of Commands Available

The entire list of commands available with this repository is:

  • train_sisr - main model training function.
  • eval_sisr - main model evaluation function.
  • image_manipulate - main bulk image converter.
  • images_to_video - Helper function to convert a folder of images into a video.
  • extract_best_model - Helper function to extract model config and best model checkpoint from a folder to a target location.
  • clean_models - Helper function to remove unnecessary model checkpoints.
  • model_report - Helper function to report on models available in specified directory.

Each command can be run with the --help parameter, which will print out the available options and docstrings.

Uninstall

Simply run:

pip uninstall Deep-FIR-SR

from any directory, with the relevant virtual environment activated.

Citation

Paper currently still in early-access, will update once fully published.

@ARTICLE{Meta-Attention,
author={Aquilina, Matthew and Galea, Christian and Abela, John and Camilleri, Kenneth P. and Farrugia, Reuben},
journal={IEEE Signal Processing Letters},
title={Improving Super-Resolution Performance using Meta-Attention Layers},
year={2021},
volume={},
number={},
pages={1-1},
doi={10.1109/LSP.2021.3116518}}

License/Further Development

This code has been released via the GNU GPLv3 open-source license. However, this code can also be made available via an alternative closed, permissive license. Third-parties interested in this form of licensing should contact us separately.

Usages of code from other repositories is properly referenced within the code itself.

We are working on a number of different research tasks in super-resolution, we'll be updating this repo as we make further advancements!

Short-term upgrades planned:

  • CI automated testing (alongside Pytest)
  • Release of packaged version
  • Other upgrades TBA
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022