[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

Overview

◥ Curriculum Labeling ◣

Revisiting Pseudo-Labeling for Semi-Supervised Learning

Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez.

In the 35th AAAI Conference on Artificial Intelligence. AAAI 2021.

AboutRequirementsTrain/EvalBibtex

About

In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples.


Curriculum Labeling (CL) Algorithm.


Requirements

  • python >= 3.7.7
  • pytorch > 1.5.0
  • torchvision
  • tensorflow-gpu==1.14
  • torchcontrib
  • pytest
  • Download both zca_components.npy and zca_mean.npy. Save them in the main folder (Curriculum-Labeling).

Train

TL;DR

Run the command below to reproduce one of our experiments on CIFAR-10 with WideResNet-28-2:

python main.py --doParallel --seed 821 --nesterov --weight-decay 0.0005 --arch WRN28_2 --batch_size 512 --epochs 700 --lr_rampdown_epochs 750 --add_name WRN28_CIFAR10_AUG_MIX_SWA --mixup --swa

Everything you need to run and evaluate Curriculum Labeling is in main.py. The Wrapper class contains all the main functions to create the model, prepare the dataset, and train your model. The arguments you pass are handled by the Wrapper. For example, if you want to activate the debug mode to sneak-peak the test set scores, you can add the argument --debug when executing python main.py.

The code below shows how to set every step and get ready to train:

import wrapper as super_glue
# all possible parameters are passed to the wrapper as a dictionary
wrapper = super_glue.Wrapper(args_dict)
# one line to prepare datasets
wrapper.prepare_datasets()
# create the model
wrapper.create_network()
# set the hyperparameters
wrapper.set_model_hyperparameters()
# set optimizer (SGD or Adam)
wrapper.set_model_optimizer()
# voilà! really? sure, print the model!
print (wrapper.model)

Then you just have to call the train and evaluate functions:

# train cl
wrapper.train_cl()
# evaluate cl 
wrapper.eval_cl()

Some Arguments and Usage

usage: main.py [-h] [--dataset DATASET] [--num_labeled L]
               [--num_valid_samples V] [--arch ARCH] [--dropout DO]
               [--optimizer OPTIMIZER] [--epochs N] [--start_epoch N] [-b N]
               [--lr LR] [--initial_lr LR] [--lr_rampup EPOCHS]
               [--lr_rampdown_epochs EPOCHS] [--momentum M] [--nesterov]
               [--weight-decay W] [--checkpoint_epochs EPOCHS]
               [--print_freq N] [--pretrained] [--root_dir ROOT_DIR]
               [--data_dir DATA_DIR] [--n_cpus N_CPUS] [--add_name ADD_NAME]
               [--doParallel] [--use_zca] [--pretrainedEval]
               [--pretrainedFrom PATH] [-e] [-evaluateLabeled]
               [-getLabeledResults]
               [--set_labeled_classes SET_LABELED_CLASSES]
               [--set_unlabeled_classes SET_UNLABELED_CLASSES]
               [--percentiles_holder PERCENTILES_HOLDER] [--static_threshold]
               [--seed SEED] [--augPolicy AUGPOLICY] [--swa]
               [--swa_start SWA_START] [--swa_freq SWA_FREQ] [--mixup]
               [--alpha ALPHA] [--debug]

Detailed list of Arguments

arg default help
--help show this help message and exit
--dataset cifar10 dataset: cifar10, svhn or imagenet
--num_labeled 400 number of labeled samples per class
--num_valid_samples 500 number of validation samples per class
--arch cnn13 either of cnn13, WRN28_2, resnet50
--dropout 0.0 dropout rate
--optimizer sgd optimizer we are going to use. can be either adam of sgd
--epochs 100 number of total epochs to run
--start_epoch 0 manual epoch number (useful on restarts)
--batch_size 100 mini-batch size (default: 100)
--learning-rate 0.1 max learning rate
--initial_lr 0.0 initial learning rate when using linear rampup
--lr_rampup 0 length of learning rate rampup in the beginning
--lr_rampdown_epochs 150 length of learning rate cosine rampdown (>= length of training): the epoch at which learning rate reaches to zero
--momentum 0.9 momentum
--nesterov use nesterov momentum
--wd 0.0001 weight decay (default: 1e-4)
--checkpoint_epochs 500 checkpoint frequency (by epoch)
--print_freq 100 print frequency (default: 10)
--pretrained use pre-trained model
--root_dir experiments folder where results are to be stored
--data_dir /data/cifar10/ folder where data is stored
--n_cpus 12 number of cpus for data loading
--add_name SSL_Test Name of your folder to store the experiment results
--doParallel use DataParallel
--use_zca use zca whitening
--pretrainedEval use pre-trained model
--pretrainedFrom /full/path/ path to pretrained results (default: none)
--set_labeled_classes 0,1,2,3,4,5,6,7,8,9 set the classes to treat as the label set
--set_unlabeled_classes 0,1,2,3,4,5,6,7,8,9 set the classes to treat as the unlabeled set
--percentiles_holder 20 mu parameter - sets the steping percentile for thresholding after each iteration
--static_threshold use static threshold
--seed 0 define seed for random distribution of dataset
--augPolicy 2 augmentation policy: 0 for none, 1 for moderate, 2 for heavy (random-augment)
--swa Apply SWA
--swa_start 200 Start SWA
--swa_freq 5 Frequency
--mixup Apply Mixup to inputs
--alpha 1.0 mixup interpolation coefficient (default: 1)
--debug Track the testing accuracy, only for debugging purposes

Bibtex

If you use Curriculum Labeling for your research or projects, please cite Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning.

@misc{cascantebonilla2020curriculum,
    title={Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning},
    author={Paola Cascante-Bonilla and Fuwen Tan and Yanjun Qi and Vicente Ordonez},
    year={2020},
    eprint={2001.06001},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022