Tools for working with MARC data in Catalogue Bridge.

Overview

catbridge_tools

Tools for working with MARC data in Catalogue Bridge.

Borrows heavily from PyMarc (https://pypi.org/project/pymarc/).

Requirements

Requires the regex module from https://bitbucket.org/mrabarnett/mrab-regex. The built-in re module is not sufficient.

Also requires py2exe.

Installation

From GitHub:

git clone https://github.com/victoriamorris/catbridge_tools
cd catbridge_tools

To install as a Python package:

python setup.py install

To create stand-alone executable (.exe) files for individual scripts:

python setup.py py2exe 

Executable files will be created in the folder \dist, and should be copied to an executable path.

Both of the above commands can be carried out by running the shell script:

compile_catbridge_tools.sh

Scripts

The scripts listed below can be run from anywhere, once the package is installed and the .exe files have been copied to an executable path.

Correspondence with original Catalogue Bridge tools

Original Catalogue Bridge tool New tool Original syntax Corresponding new syntax
cn-find cn-find CN-FIND cn_find -i -o -c
cn-tidy cn-find CN-FIND cn_find -i -o -c --tidy

Features common to all scripts

File formats

Unless otherwise specified, MARC files are in MARC 21 format, with .lex file extensions. Unless otherwise specified, text files are UTF-8-encoded, with .txt, .csv or .tsv file extensions. Config files are also text files, but may have the file extension .cfg for convenience.

Help

For any script, use the option --help to display help text.

Logs and debugging

Logs will be written to catbridge.log within the working directory. This is a UTF-8 encoded text field and can be read in any text editor. The default logging level is INFO; if option --debug is set, the logging level is changed to DEBUG. See https://docs.python.org/3/library/logging.html#levels for information about logging levels.

cn_find

cn_find is a utility which extracts extract control numbers from specified fields and subfields within a file of MARC records.

The fields and subfields to be extracted are specified in a config file.

Usage: cn_find -i 
   
     -o 
    
      -c 
     
       [options]

Options:
    --conv  Convert 10-digit ISBNs to 13-digit form where possible
    --rid   Include record ID as the first column of the output file
    --tidy  Sort and de-duplicate list

    --debug	Debug mode.
    --help	Show help message and exit.

     
    
   

Files

is the name of the input file, which must be a file of MARC 21 records.

is the name of the file to which the control numbers will be written. This should be a text file.

is the name of the file containing the configuration directives.

The config file

The format of the configuration file is as follows, with one entry per line

FIELD TAG $ subfield character [tab] control number specification

Each line must match the regular expression

^([0-9A-Z]{3})\s*\$?\s*([a-z0-9]?)\s*\t(.*?)\s*$

The field tag is specified using three numbers or UPPERCASE letters.

The subfield code are specified using a single number or lowercase letter. If '$' appears without any following subfield characters, all subfields will be searched for control numbers.

The control number specification tells the script what kind of control number to search for within the subfield. This can either take a value from a pre-defined list, or a regular expression can be used to search for control numbers with any other structure. Regular expressions are case-sensitive.

Control number specification Description Regular expression
ISBN Any structurally plausible ISBN* \b(?=(?:[0-9]+[- ]?){10})[0-9]{9}[0-9Xx]\b|\b(?=(?:[0-9]+[- ]?){13})[0-9]{1,5}[- ][0-9]+[- ][0-9]+[- ][0-9Xx]\b|\b97[89][0-9]{10}\b|\b(?=(?:[0-9]+[- ]){4})97[89][- 0-9]{13}[0-9]\b
ISBN10 Any structurally plausible 10-digit ISBN* \b(?=(?:[0-9]+[- ]?){10})[0-9]{9}[0-9Xx]\b|\b(?=(?:[0-9]+[- ]?){13})[0-9]{1,5}[- ][0-9]+[- ][0-9]+[- ][0-9Xx]\b
ISBN13 Any structurally plausible 13-digit ISBN* \b97[89][0-9]{10}\b|\b(?=(?:[0-9]+[- ]){4})97[89][- 0-9]{13}[0-9]\b
ISSN 8 digits with a hyphen in the middle, where the last digit may be an X \b[0-9]{4}[ -]?[0-9]{3}[0-9Xx]\b
BL001 9 digits \b[0-9]{9}\b
BNB See https://www.bl.uk/collection-metadata/metadata-services/structure-of-the-bnb-number \bGB([0-9]{7}|[A-Z][0-9][A-Z0-9][0-9]{4})\b
LCCN See https://www.loc.gov/marc/bibliographic/bd010.html \b[a-z][a-z ][a-z ]?[0-9]{2}[0-9]{6} ?\b
OCLC "(OCoLC)" followed by digits (OCoLC)[0-9]+\b
ISNI 16 digits separated into groups of 4 with spaces or hyphens \b[0]{4}[ -]?[0-9]{4}[ -]?[0-9]{4}[ -]?[0-9]{3}[0-9Xx]\b
FAST "fst" followed by digits \bfst[0-9]{8}\b

*Note: The ISBN check digit is not validated.

Multiple fields and subfields may be specified. Fields may be repeated with different subfields.

Example:

001 BL001
015$a	BNB
020	ISBN
020$z	ISBN10
500$a	\b[a-z]{7}\b
035$a	OCLC

In the example above, field 500 subfield $a is being searched for 7-character words.

Options

--conv

If option --conv is used, 10-digit ISBNs will be converted to 13-digit form whenever possible (i.e. whenever they are valid ISBNs).

--rid

By default, the output file consists of a single column of strings. If option --rid is used, the output file will consist of two columns: the first column will be the record control number from field 001 and the second column will be as per the default output.

--tidy

If option --tidy is used, the list of control numbers in the output file will be sorted and de-duplicated. Any duplicate control numbers will be written to an additional output file named with the prefix "dp-".

Note: option --tidy cannot be used at the same time as option --rid

songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
We're Team Arson and we're using the power of predictive modeling to combat wildfires.

We're Team Arson and we're using the power of predictive modeling to combat wildfires. Arson Map Inspiration There’s been a lot of wildfires in Califo

Jerry Lee 3 Oct 17, 2021
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
Visions provides an extensible suite of tools to support common data analysis operations

Visions And these visions of data types, they kept us up past the dawn. Visions provides an extensible suite of tools to support common data analysis

168 Dec 28, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset

xwrf A lightweight interface for reading in output from the Weather Research and Forecasting (WRF) model into xarray Dataset. The primary objective of

National Center for Atmospheric Research 43 Nov 29, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022