Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Related tags

Deep Learninglooking
Overview

Do pedestrians pay attention? Eye contact detection for autonomous driving

Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

alt text

Image taken from : https://jooinn.com/people-walking-on-pedestrian-lane-during-daytime.html . Results obtained with the model trained on JackRabbot, Nuscenes, JAAD and Kitti. The model file is available at models/predictor and can be reused for testing with the predictor.

Abstract

In urban or crowded environments, humans rely on eye contact for fast and efficient communication with nearby people. Autonomous agents also need to detect eye contact to interact with pedestrians and safely navigate around them. In this paper, we focus on eye contact detection in the wild, i.e., real-world scenarios for autonomous vehicles with no control over the environment or the distance of pedestrians. We introduce a model that leverages semantic keypoints to detect eye contact and show that this high-level representation (i) achieves state-of-the-art results on the publicly-available dataset JAAD, and (ii) conveys better generalization properties than leveraging raw images in an end-to-end network. To study domain adaptation, we create LOOK: a large-scale dataset for eye contact detection in the wild, which focuses on diverse and unconstrained scenarios for real-world generalization. The source code and the LOOK dataset are publicly shared towards an open science mission.

Table of contents

Requirements

Use 3.6.9 <= python < 3.9. Run pip3 install -r requirements.txt to get the dependencies

Predictor

Get predictions from our pretrained model using any image with the predictor. The scripts extracts the human keypoints on the fly using OpenPifPaf. The predictor supports eye contact detection using human keypoints only. You need to specify the following arguments in order to run correctly the script:

Parameter Description
--glob Glob expression to be used. Example: .png
--images Path to the input images. If glob is enabled you need the path to the directory where you have the query images
--looking_threshold Threshold to define an eye contact. Default 0.5
--transparency Transparency of the output poses. Default 0.4

Example command:

If you want to reproduce the result of the top image, run:

If you want to run the predictor on a GPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg

If you want to run the predictor on a CPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg --device cpu --disable-cuda

Create the datasets for training and evaluation

Please follow the instructions on the folder create_data.

Training your models on LOOK / JAAD / PIE

You have one config file to modify. Do not change the variables name. Check the meaning of each variable to change on the training wiki.

After changing your configuration file, run:

python train.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Evaluate your trained models

Check the meaning of each variable to change on the evaluation wiki.

After changing your configuration file, run:

python evaluate.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Annotate new images

Check out the folder annotator in order to run our annotator to annotate new instances for the task.

Credits

Credits to OpenPifPaf for the pose detection part, and JRDB, Nuscenes and Kitti datasets for the images.

Cite our work

If you use our work for your research please cite us :)

@misc{belkada2021pedestrians,
      title={Do Pedestrians Pay Attention? Eye Contact Detection in the Wild}, 
      author={Younes Belkada and Lorenzo Bertoni and Romain Caristan and Taylor Mordan and Alexandre Alahi},
      year={2021},
      eprint={2112.04212},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022