[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

Related tags

Deep Learningpytorch
Overview

InvCompress

Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral)

Figure: Our framework

Acknowledgement

The framework is based on CompressAI, we add our model in compressai.models.ours, compressai.models.our_utils. We modify compressai.utils, compressai.zoo, compressai.layers and examples/train.py for usage. Part of the codes benefit from Invertible-Image-Rescaling.

Introduction

In this paper, we target at structuring a better transformation between the image space and the latent feature space. Instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. To solve the challenge of unstable training with INN, we propose an attentive channel squeeze layer to flexibly adjust the feature dimension for a lower bit rate. We also present a feature enhancement module with same-resolution transforms and residual connections to improve the network nonlinear representation capacity.

[Paper]

Figure: Our results

Installation

As mentioned in CompressAI, "A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list)."

git clone https://github.com/xyq7/InvCompress.git
cd InvCompress/codes/
conda create -n invcomp python=3.7 
conda activate invcomp
pip install -U pip && pip install -e .
conda install -c conda-forge tensorboard

Usage

Evaluation

If you want evaluate with pretrained model, please download from Google drive or Baidu cloud (code: a7jd) and put in ./experiments/

Some evaluation dataset can be downloaded from kodak dataset, CLIC

Note that as mentioned in original CompressAI, "Inference on GPU is not recommended for the autoregressive models (the entropy coder is run sequentially on CPU)." So for inference of our model, please run on CPU.

python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

An example: to evaluate model of quality 1 optimized with mse on kodak dataset.

python -m compressai.utils.eval_model checkpoint ../data/kodak -a invcompress -exp exp_01_mse_q1 -s ../results/exp_01

If you want to evaluate your trained model on own data, please run update before evaluation. An example:

python -m compressai.utils.update_model -exp $exp_name -a invcompress
python -m compressai.utils.eval_model checkpoint $eval_data_dir -a invcompress -exp $exp_name -s $save_dir

Train

We use the training dataset processed in the repo. We further preprocess with /codes/scripts/flicker_process.py Training setting is detailed in the paper. You can also use your own data for training.

python examples/train.py -exp $exp_name -m invcompress -d $train_data_dir --epochs $epoch_num -lr $lr --batch-size $batch_size --cuda --gpu_id $gpu_id --lambda $lamvda --metrics $metric --save 

An example: to train model of quality 1 optimized with mse metric.

python examples/train.py -exp exp_01_mse_q1 -m invcompress -d ../data/flicker --epochs 600 -lr 1e-4 --batch-size 8 --cuda --gpu_id 0 --lambda 0.0016 --metrics mse --save 

Other usage please refer to the original library CompressAI

Citation

If you find this work useful for your research, please cite:

@inproceedings{xie2021enhanced,
    title = {Enhanced Invertible Encoding for Learned Image Compression}, 
    author = {Yueqi Xie and Ka Leong Cheng and Qifeng Chen},
    booktitle = {Proceedings of the ACM International Conference on Multimedia},
    year = {2021}
}

Contact

Feel free to contact us if there is any question. (YueqiXIE, [email protected]; Ka Leong Cheng, [email protected])

The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

106 Dec 14, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022