[email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo" /> [email protected]) Boosting Co-teaching with Compression Regularization for Label Noise | PythonRepo">

([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Overview

Nested-Co-teaching

([email protected]) Pytorch implementation of paper "Boosting Co-teaching with Compression Regularization for Label Noise"

[PDF]

If our project is helpful for your research, please consider citing :

@inproceedings{chen2021boosting, 
	  title={Boosting Co-teaching with Compression Regularization for Label Noise}, 
	  author={Chen, Yingyi and Shen, Xi and Hu, Shell Xu and Suykens, Johan AK}, 
	  booktitle={CVPR Learning from Limited and Imperfect Data (L2ID) workshop}, 
	  year={2021} 
	}

Our model can be learnt in a single GPU GeForce GTX 1080Ti (12G), this code has been tested with Pytorch 1.7.1

Table of Content

1. Toy Results

The nested regularization allows us to learn ordered representation which would be useful to combat noisy label. In this toy example, we aim at learning a projection from X to Y with noisy pairs. By adding nested regularization, the most informative recontruction is stored in the first few channels.

Baseline, same MLP Nested200, 1st channel
gif gif
Nested200,first 10 channels Nested200, first 100 channels
gif gif

2. Results on Clothing1M and Animal

Clothing1M [Xiao et al., 2015]

  • We provide average accuracy as well as the standard deviation for three runs (%) on the test set of Clothing1M [Xiao et al., 2015]. Results with “*“ are either using a balanced subset or a balanced loss.
Methods [email protected] result_ref/download
CE 67.2 [Wei et al., 2020]
F-correction [Patrini et al., 2017] 68.9 [Wei et al., 2020]
Decoupling [Malach and Shalev-Shwartz, 2017] 68.5 [Wei et al., 2020]
Co-teaching [Han et al., 2018] 69.2 [Wei et al., 2020]
Co-teaching+ [Yu et al., 2019] 59.3 [Wei et al., 2020]
JoCoR [Wei et al., 2020] 70.3 --
JO [Tanaka et al., 2018] 72.2 --
Dropout* [Srivastava et al., 2014] 72.8 --
PENCIL* [Yi and Wu, 2019] 73.5 --
MLNT [Li et al., 2019] 73.5 --
PLC* [Zhang et al., 2021] 74.0 --
DivideMix* [Li et al., 2020] 74.8 --
Nested* (Ours) 73.1 ± 0.3 model
Nested + Co-teaching* (Ours) 74.9 ± 0.2 model

ANIMAL-10N [Song et al., 2019]

  • We provide test set accuracy (%) on ANIMAL-10N [Song et al., 2019]. We report average accuracy as well as the standard deviation for three runs.
Methods [email protected] result_ref/download
CE 79.4 ± 0.1 [Song et al., 2019]
Dropout [Srivastava et al., 2014] 81.3 ± 0.3 --
SELFIE [Song et al., 2019] 81.8 ± 0.1 --
PLC [Zhang et al., 2021] 83.4 ± 0.4 --
Nested (Ours) 81.3 ± 0.6 model
Nested + Co-teaching (Ours) 84.1 ± 0.1 model

3. Datasets

Clothing1M

To download Clothing1M dataset [Xiao et al., 2015], please refer to here. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Clothing1M
├── noisy_train
├── clean_val
└── clean_test

Generate two random Clothing1M noisy subsets for training after unzipping :

cd data/
# generate two random subsets for training
python3 clothing1M_rand_subset.py --name noisy_rand_subtrain1 --data-dir ./Clothing1M/ --seed 123

python3 clothing1M_rand_subset.py --name noisy_rand_subtrain2 --data-dir ./Clothing1M/ --seed 321

Please refer to data/gen_data.sh for more details.

ANIMAL-10N

To download ANIMAL-10N dataset [Song et al., 2019], please refer to here. It includes one training and one test set. Once it is downloaded, put it into ./data/. The structure of the file should be:

./data/Animal10N/
├── train
└── test

4. Train

4.1. Stage One : Training Nested Dropout Networks

We first train two Nested Dropout networks separately to provide reliable base networks for the subsequent stage. You can run the training of this stage by :

  • For training networks on Clothing1M (ResNet-18). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_clothing1m.sh.
cd nested/ 
# train one Nested network
python3 train_resnet.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --arch resnet18 --lrSchedule 5 --lr 0.02 --nbEpoch 30 --batchsize 448 --nested 100 --pretrained --freeze-bn --out-dir ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_freezeBN_imgnet_model1 --gpu 0
  • For training networks on ANIMAL-10N (VGG-19+BN). You can also train baseline/dropout networks for comparisons. More details are provided in nested/run_animal10n.sh.
cd nested/ 
python3 train_vgg.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lr-gamma 0.2 --batchsize 128 --warmUpIter 6000 --nested1 100 --nested2 100 --alter-train --out-dir ./checkpoints_animal10n/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1 --gpu 0

4.2. Stage Two : Fine-tuning with Co-teaching

In this stage, the two trained networks are further fine-tuned with Co-teaching. You can run the training of this stage by :

  • For fine-tuning with Co-teaching on Clothing1M (ResNet-18) :
cd co_teaching_resnet/ 
python3 main.py --train-dir ../data/Clothing1M/noisy_rand_subtrain1/ --val-dir ../data/Clothing1M/clean_val/ --dataset Clothing1M --lrSchedule 5 --nGradual 0 --lr 0.002 --nbEpoch 30 --warmUpIter 0 --batchsize 448 --freeze-bn --forgetRate 0.3 --out-dir ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100 --resumePthList ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 ../nested/checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model2_Acc0.733_K15 --nested 100 --gpu 0

The two Nested ResNet-18 networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_resnet/run_clothing1m.sh.

  • For fine-tuning with Co-teaching on ANIMAL-10N (VGG-19+BN) :
cd co_teaching_vgg/ 
python3 main.py --train-dir ../data/Animal10N/train/ --val-dir ../data/Animal10N/test/ --dataset Animal10N --arch vgg19-bn --lrSchedule 5 --nGradual 0 --lr 0.004 --nbEpoch 30 --warmUpIter 0 --batchsize 128 --freeze-bn --forgetRate 0.2 --out-dir ./finetune_ckpt/Animal10N_alter_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100 --resumePthList ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model1_Acc0.803_K14 ../nested/checkpoints_animal10n/new_code_nested/Animal10N_alter_nested100_100_vgg19bn_lr0.1_warm6000_bs128_model2_Acc0.811_K14 --nested1 100 --nested2 100 --alter-train --gpu 0

The two Nested VGG-19+BN networks trained in stage one can be downloaded here: ckpt1, ckpt2. We also provide commands for training Co-teaching from scratch for comparisons in co_teaching_vgg/run_animal10n.sh.

5. Evaluation

To evaluate models' ability of combating with label noise, we compute classification accuracy on a provided clean test set.

5.1. Stage One : Nested Dropout Networks

Evaluation of networks derived from stage one are provided here :

cd nested/ 
# for networks on 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./checkpoints/Cloth1M_nested100_lr2e-2_bs448_imgnet_freezeBN_model1_Acc0.735_K12 --KList 12 --gpu 0

More details can be found in nested/run_test.sh. Note that "_K12" in the model's name denotes the index of the optimal K, and the optimal number of channels for the model is actually 13 (nb of optimal channels = index of channel + 1).

5.2. Stage Two : Fine-tuning Co-teaching Networks

Evaluation of networks derived from stage two are provided as follows.

  • Networks trained on Clothing1M:
cd co_teaching_resnet/ 
python3 test.py --test-dir ../data/Clothing1M/clean_test/ --dataset Clothing1M --arch resnet18 --resumePthList ./finetune_ckpt/Cloth1M_nested100_lr2e-3_bs448_freezeBN_fgr0.3_pre_nested100_100_model2_Acc0.749_K24 --KList 24 --gpu 0

More details can be found in co_teaching_resnet/run_test.sh.

  • Networks trained on ANIMAL-10N:
cd co_teaching_vgg/ 
python3 test.py --test-dir ../data/Animal10N/test/ --dataset Animal10N --resumePthList ./finetune_ckpt/Animal10N_nested100_lr4e-3_bs128_freezeBN_fgr0.2_pre_nested100_100_nested100_100_model1_Acc0.842_K12 --KList 12 --gpu 0

More details can be found in co_teaching_vgg/run_test.sh.

Program created with opencv that allows you to automatically count your repetitions on several fitness exercises.

Virtual partner of gym Description Program created with opencv that allows you to automatically count your repetitions on several fitness exercises li

1 Jan 04, 2022
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
A toolbox of scene text detection and recognition

FudanOCR This toolbox contains the implementations of the following papers: Scene Text Telescope: Text-Focused Scene Image Super-Resolution [Chen et a

FudanVIC Team 170 Dec 26, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
A set of workflows for corpus building through OCR, post-correction and normalisation

PICCL: Philosophical Integrator of Computational and Corpus Libraries PICCL offers a workflow for corpus building and builds on a variety of tools. Th

Language Machines 41 Dec 27, 2022
STEFANN: Scene Text Editor using Font Adaptive Neural Network

STEFANN: Scene Text Editor using Font Adaptive Neural Network @ The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Prasun Roy 208 Dec 11, 2022