Driver Drowsiness Detection with OpenCV & Dlib

Overview

Python-Assignment

Building Driver Drowsiness Detection System

Driver Drowsiness Detection with OpenCV & Dlib

In this project, we are going to build a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

This can be an important safety implementation as studies suggest that accidents due to drivers getting drowsy or sleepy account for around 20% of all accidents and on certain long journey roads it’s up to 50%. It is a serious issue and most people that have driven for long hours at night can relate to the fact that fatigue and slight brief state of unconsciousness can happen to anyone and everyone.

There has been an increase in safety systems in cars & other vehicles and many are now mandatory in vehicles, but all of them cannot help if a driver falls asleep behind the wheel even for a brief moment. Hence that is what we are gonna build today – Driver Drowsiness Detection System

The libraries need for driver drowsiness detection system are

  1. Opencv
  2. Dlib
  3. Numpy

These are the only packages you will need for this machine learning project.

OpenCV and NumPy installation is using pip install and dlib installation using pip only works if you have cmake and vs build tools 2015 or later (if on python version>=3.7) The easiest way is to create a python 3.6 env in anaconda and install a dlib wheel supported for python 3.6.

Import the libraries

Numpy is used for handling the data from dlib and mathematical functions. Opencv will help us in gathering the frames from the webcam and writing over them and also displaying the resultant frames.

Dlib to extract features from the face and predict the landmark using its pre-trained face landmark detector.

Dlib is an open source toolkit written in c++ that has a variety of machine learning models implemented and optimized. Preference is given to dlib over other libraries and training your own model because it is fairly accurate, fast, well documented, and available for academic, research, and even commercial use.

Dlib’s accuracy and speed are comparable with the most state-of-the-art neural networks, and because the scope of this project is not to train one, we’ll be using dlib python wrapper Pretrained facial landmark model is available with the code, you can download it from there.

The hypot function from the math library calculates the hypotenuse of a right-angle triangle or the distance between two points (euclidean norm).

import numpy as np
import dlib
import cv2
from math import hypot

Here we prepare our capture call to OpenCV’s video capture method that will capture the frames from the webcam in an infinite loop till we break it and stop the capture.

cap = cv2.VideoCapture(0)

Dlib’s face and facial landmark predictors

Keep the downloaded landmark detection .dat file in the same folder as this code file or provide a complete path in the dlib.shape_predictor function.

This will prepare the predictor for further prediction.

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

We create a function to calculate the midpoint from two given points.

As we are gonna use this more than once in a call we create a separate function for this.

def mid(p1 ,p2):
    return int((p1.x + p2.x)/2), int((p1.y + p2.y)/2)

Create a function for calculating the blinking ratio

Create a function for calculating the blinking ratio or the eye aspect ratio of the eyes. There are six landmarks for representing each eye.

Starting from the left corner moving clockwise. We find the ratio of height and width of the eye to infer the open or close state of the eye.blink-ratio=(|p2-p6|+|p3-p5|)(2|p1-p4|). The ratio falls to approximately zero when the eye is close but remains constant when they are open.

def eye_aspect_ratio(eye_landmark, face_roi_landmark):
    left_point = (face_roi_landmark.part(eye_landmark[0]).x, face_roi_landmark.part(eye_landmark[0]).y)
    right_point = (face_roi_landmark.part(eye_landmark[3]).x, face_roi_landmark.part(eye_landmark[3]).y)
    center_top = mid(face_roi_landmark.part(eye_landmark[1]), face_roi_landmark.part(eye_landmark[2]))
    center_bottom = mid(face_roi_landmark.part(eye_landmark[5]), face_roi_landmark.part(eye_landmark[4]))
    hor_line_length = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
    ver_line_length = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
    ratio = hor_line_length / ver_line_length
    return ratio

Create a function for calculating mouth aspect ratio

Similarly, we define the mouth ratio function for finding out if a person is yawning or not. This function gives the ratio of height to width of mouth. If height is more than width it means that the mouth is wide open.

For this as well we use a series of points from the dlib detector to find the ratio.

def mouth_aspect_ratio(lips_landmark, face_roi_landmark):
    left_point = (face_roi_landmark.part(lips_landmark[0]).x, face_roi_landmark.part(lips_landmark[0]).y)
    right_point = (face_roi_landmark.part(lips_landmark[2]).x, face_roi_landmark.part(lips_landmark[2]).y)
    center_top = (face_roi_landmark.part(lips_landmark[1]).x, face_roi_landmark.part(lips_landmark[1]).y)
    center_bottom = (face_roi_landmark.part(lips_landmark[3]).x, face_roi_landmark.part(lips_landmark[3]).y)
    hor_line_length = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
    ver_line_length = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
    if hor_line_length == 0:
        return ver_line_length
    ratio = ver_line_length / hor_line_length
    return ratio

We create a counter variable to count the number of frames the eye has been close for or the person is yawning and later use to define drowsiness in driver drowsiness detection system project Also, we declare the font for writing on images with opencv.

count = 0
font = cv2.FONT_HERSHEY_TRIPLEX

Begin processing of frames

Creating an infinite loop we receive frames from the opencv capture method.

We flip the frame because mirror image and convert it to grayscale. Then pass it to the face detector.

while True:
    _, img = cap.read()
    img = cv2.flip(img,1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = detector(gray)

We loop if there are more than one face in the frame and calculate for all faces. Passing the face to the landmark predictor we get the facial landmarks for further analysis.

Passing the points of each eye to the compute_blinking_ratio function we calculate the ratio for both the eyes and then take the mean of it.

  for face_roi in faces:
        landmark_list = predictor(gray, face_roi)
        left_eye_ratio = eye_aspect_ratio([36, 37, 38, 39, 40, 41], landmark_list)
        right_eye_ratio = eye_aspect_ratio([42, 43, 44, 45, 46, 47], landmark_list)
        eye_open_ratio = (left_eye_ratio + right_eye_ratio) / 2
        cv2.putText(img, str(eye_open_ratio), (0, 13), font, 0.5, (100, 100, 100))
        ###print(left_eye_ratio,right_eye_ratio,eye_open_ratio)
        #Similarly we calculate the ratio for the mouth to get yawning status, for both outer and inner lips to be more accurate and calculate its mean.
        inner_lip_ratio = mouth_aspect_ratio([60,62,64,66], landmark_list)
        outter_lip_ratio = mouth_aspect_ratio([48,51,54,57], landmark_list)
        mouth_open_ratio = (inner_lip_ratio + outter_lip_ratio) / 2;
        cv2.putText(img, str(mouth_open_ratio), (448, 13), font, 0.5, (100, 100, 100))
        ###print(inner_lip_ratio,outter_lip_ratio,mouth_open_ratio)

Now that we have our data we check if the mouth is wide open and the eyes are not closed. If we find that either of these situations occurs we increment the counter variable counting the number of frames the situation is persisting.

We also find the coordinates for the face bounding box

If the eyes are close or yawning occurs for more than 10 consecutive frames we infer the driver as drowsy and print that on the image as well as creating the bounding box red, else just create a green bounding box ``python if mouth_open_ratio > 0.380 and eye_open_ratio > 4.0 or eye_open_ratio > 4.30: count +=1 else: count = 0 x,y = face_roi.left(), face_roi.top() x1,y1 = face_roi.right(), face_roi.bottom() if count>10: cv2.rectangle(img, (x,y), (x1,y1), (0, 0, 255), 2) cv2.putText(img, "Sleepy", (x, y-5), font, 0.5, (0, 0, 255))

else: cv2.rectangle(img, (x,y), (x1,y1), (0, 255, 0), 2) `` Finally, we show the frame and wait for the esc keypress to exit the infinite loop.

After we exit the loop we release the webcam capture and close all the windows and exit the program.

Driver Drowsiness Detection Output

Summary

we have successfully created driver drowsiness detector, we can implement it in other projects like computer vision, self-driving cars, drive safety, etc.

Driver drowsiness project can be used with a raspberry pie to create a standalone system for drivers, used as a web service, or installed in workplaces to monitor employees’ activity. The sensitivity and the number of frames can be changed according to the requirements.

Made with 😃 Sanskriti Harmukh | Satyam Jain | Archit Chawda

Owner
Mansi Mishra
Hey ! I am Mansi Mishra Pursuing my Second Year of B.Tech In Computer science and Engineering. I am a full-stack web Developer. An Open Source Enthusiast.
Mansi Mishra
This can be use to convert text in a file to handwritten text.

TextToHandwriting This can be used to convert text to handwriting. Clone this project or download the code. Run TextToImage.py give the filename of th

Ashutosh Mahapatra 2 Feb 06, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
Creating of virtual elements of the graphical interface using opencv and mediapipe.

Virtual GUI Creating of virtual elements of the graphical interface using opencv and mediapipe. Element GUI Output Description Button By default the b

Aleksei 4 Jun 16, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
A python program to block out your face

Readme This is a small program I threw together in about 6 hours to block out your face. It probably doesn't work very well, so be warned. By default,

1 Oct 17, 2021
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022