Driver Drowsiness Detection with OpenCV & Dlib

Overview

Python-Assignment

Building Driver Drowsiness Detection System

Driver Drowsiness Detection with OpenCV & Dlib

In this project, we are going to build a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

This can be an important safety implementation as studies suggest that accidents due to drivers getting drowsy or sleepy account for around 20% of all accidents and on certain long journey roads it’s up to 50%. It is a serious issue and most people that have driven for long hours at night can relate to the fact that fatigue and slight brief state of unconsciousness can happen to anyone and everyone.

There has been an increase in safety systems in cars & other vehicles and many are now mandatory in vehicles, but all of them cannot help if a driver falls asleep behind the wheel even for a brief moment. Hence that is what we are gonna build today – Driver Drowsiness Detection System

The libraries need for driver drowsiness detection system are

  1. Opencv
  2. Dlib
  3. Numpy

These are the only packages you will need for this machine learning project.

OpenCV and NumPy installation is using pip install and dlib installation using pip only works if you have cmake and vs build tools 2015 or later (if on python version>=3.7) The easiest way is to create a python 3.6 env in anaconda and install a dlib wheel supported for python 3.6.

Import the libraries

Numpy is used for handling the data from dlib and mathematical functions. Opencv will help us in gathering the frames from the webcam and writing over them and also displaying the resultant frames.

Dlib to extract features from the face and predict the landmark using its pre-trained face landmark detector.

Dlib is an open source toolkit written in c++ that has a variety of machine learning models implemented and optimized. Preference is given to dlib over other libraries and training your own model because it is fairly accurate, fast, well documented, and available for academic, research, and even commercial use.

Dlib’s accuracy and speed are comparable with the most state-of-the-art neural networks, and because the scope of this project is not to train one, we’ll be using dlib python wrapper Pretrained facial landmark model is available with the code, you can download it from there.

The hypot function from the math library calculates the hypotenuse of a right-angle triangle or the distance between two points (euclidean norm).

import numpy as np
import dlib
import cv2
from math import hypot

Here we prepare our capture call to OpenCV’s video capture method that will capture the frames from the webcam in an infinite loop till we break it and stop the capture.

cap = cv2.VideoCapture(0)

Dlib’s face and facial landmark predictors

Keep the downloaded landmark detection .dat file in the same folder as this code file or provide a complete path in the dlib.shape_predictor function.

This will prepare the predictor for further prediction.

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

We create a function to calculate the midpoint from two given points.

As we are gonna use this more than once in a call we create a separate function for this.

def mid(p1 ,p2):
    return int((p1.x + p2.x)/2), int((p1.y + p2.y)/2)

Create a function for calculating the blinking ratio

Create a function for calculating the blinking ratio or the eye aspect ratio of the eyes. There are six landmarks for representing each eye.

Starting from the left corner moving clockwise. We find the ratio of height and width of the eye to infer the open or close state of the eye.blink-ratio=(|p2-p6|+|p3-p5|)(2|p1-p4|). The ratio falls to approximately zero when the eye is close but remains constant when they are open.

def eye_aspect_ratio(eye_landmark, face_roi_landmark):
    left_point = (face_roi_landmark.part(eye_landmark[0]).x, face_roi_landmark.part(eye_landmark[0]).y)
    right_point = (face_roi_landmark.part(eye_landmark[3]).x, face_roi_landmark.part(eye_landmark[3]).y)
    center_top = mid(face_roi_landmark.part(eye_landmark[1]), face_roi_landmark.part(eye_landmark[2]))
    center_bottom = mid(face_roi_landmark.part(eye_landmark[5]), face_roi_landmark.part(eye_landmark[4]))
    hor_line_length = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
    ver_line_length = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
    ratio = hor_line_length / ver_line_length
    return ratio

Create a function for calculating mouth aspect ratio

Similarly, we define the mouth ratio function for finding out if a person is yawning or not. This function gives the ratio of height to width of mouth. If height is more than width it means that the mouth is wide open.

For this as well we use a series of points from the dlib detector to find the ratio.

def mouth_aspect_ratio(lips_landmark, face_roi_landmark):
    left_point = (face_roi_landmark.part(lips_landmark[0]).x, face_roi_landmark.part(lips_landmark[0]).y)
    right_point = (face_roi_landmark.part(lips_landmark[2]).x, face_roi_landmark.part(lips_landmark[2]).y)
    center_top = (face_roi_landmark.part(lips_landmark[1]).x, face_roi_landmark.part(lips_landmark[1]).y)
    center_bottom = (face_roi_landmark.part(lips_landmark[3]).x, face_roi_landmark.part(lips_landmark[3]).y)
    hor_line_length = hypot((left_point[0] - right_point[0]), (left_point[1] - right_point[1]))
    ver_line_length = hypot((center_top[0] - center_bottom[0]), (center_top[1] - center_bottom[1]))
    if hor_line_length == 0:
        return ver_line_length
    ratio = ver_line_length / hor_line_length
    return ratio

We create a counter variable to count the number of frames the eye has been close for or the person is yawning and later use to define drowsiness in driver drowsiness detection system project Also, we declare the font for writing on images with opencv.

count = 0
font = cv2.FONT_HERSHEY_TRIPLEX

Begin processing of frames

Creating an infinite loop we receive frames from the opencv capture method.

We flip the frame because mirror image and convert it to grayscale. Then pass it to the face detector.

while True:
    _, img = cap.read()
    img = cv2.flip(img,1)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = detector(gray)

We loop if there are more than one face in the frame and calculate for all faces. Passing the face to the landmark predictor we get the facial landmarks for further analysis.

Passing the points of each eye to the compute_blinking_ratio function we calculate the ratio for both the eyes and then take the mean of it.

  for face_roi in faces:
        landmark_list = predictor(gray, face_roi)
        left_eye_ratio = eye_aspect_ratio([36, 37, 38, 39, 40, 41], landmark_list)
        right_eye_ratio = eye_aspect_ratio([42, 43, 44, 45, 46, 47], landmark_list)
        eye_open_ratio = (left_eye_ratio + right_eye_ratio) / 2
        cv2.putText(img, str(eye_open_ratio), (0, 13), font, 0.5, (100, 100, 100))
        ###print(left_eye_ratio,right_eye_ratio,eye_open_ratio)
        #Similarly we calculate the ratio for the mouth to get yawning status, for both outer and inner lips to be more accurate and calculate its mean.
        inner_lip_ratio = mouth_aspect_ratio([60,62,64,66], landmark_list)
        outter_lip_ratio = mouth_aspect_ratio([48,51,54,57], landmark_list)
        mouth_open_ratio = (inner_lip_ratio + outter_lip_ratio) / 2;
        cv2.putText(img, str(mouth_open_ratio), (448, 13), font, 0.5, (100, 100, 100))
        ###print(inner_lip_ratio,outter_lip_ratio,mouth_open_ratio)

Now that we have our data we check if the mouth is wide open and the eyes are not closed. If we find that either of these situations occurs we increment the counter variable counting the number of frames the situation is persisting.

We also find the coordinates for the face bounding box

If the eyes are close or yawning occurs for more than 10 consecutive frames we infer the driver as drowsy and print that on the image as well as creating the bounding box red, else just create a green bounding box ``python if mouth_open_ratio > 0.380 and eye_open_ratio > 4.0 or eye_open_ratio > 4.30: count +=1 else: count = 0 x,y = face_roi.left(), face_roi.top() x1,y1 = face_roi.right(), face_roi.bottom() if count>10: cv2.rectangle(img, (x,y), (x1,y1), (0, 0, 255), 2) cv2.putText(img, "Sleepy", (x, y-5), font, 0.5, (0, 0, 255))

else: cv2.rectangle(img, (x,y), (x1,y1), (0, 255, 0), 2) `` Finally, we show the frame and wait for the esc keypress to exit the infinite loop.

After we exit the loop we release the webcam capture and close all the windows and exit the program.

Driver Drowsiness Detection Output

Summary

we have successfully created driver drowsiness detector, we can implement it in other projects like computer vision, self-driving cars, drive safety, etc.

Driver drowsiness project can be used with a raspberry pie to create a standalone system for drivers, used as a web service, or installed in workplaces to monitor employees’ activity. The sensitivity and the number of frames can be changed according to the requirements.

Made with 😃 Sanskriti Harmukh | Satyam Jain | Archit Chawda

Owner
Mansi Mishra
Hey ! I am Mansi Mishra Pursuing my Second Year of B.Tech In Computer science and Engineering. I am a full-stack web Developer. An Open Source Enthusiast.
Mansi Mishra
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

2.4k Jan 08, 2023
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vectors.

Vectorizing color range This repo contains a script that allows us to find range of colors in images using openCV, and then convert them into geo vect

Development Seed 9 Jul 27, 2022
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022
Pixel art search engine for opengameart

Pixel Art Reverse Image Search for OpenGameArt What does the final search look like? The final search with an example can be found here. It looks like

Eivind Magnus Hvidevold 92 Nov 06, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Handwriting Recognition System based on a deep Convolutional Recurrent Neural Network architecture

Handwriting Recognition System This repository is the Tensorflow implementation of the Handwriting Recognition System described in Handwriting Recogni

Edgard Chammas 346 Jan 07, 2023
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022