Table Extraction Tool

Overview

Tree Structure - Table Extraction

Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables. A crucial step in this process is the construction of the hierarchical tree of context objects such as text blocks, figures, tables, etc. The system currently uses PDF to HTML conversion provided by Adobe Acrobat converter. Adobe Acrobat converter is not an open source tool and this can be very inconvenient for Fonduer users. We therefore need to build our own module as replacement to Adobe Acrobat. Several open source tools are available for pdf to html conversion but these tools do not preserve the cell structure in a table. Our goal in this project is to develop a tool that extracts text, figures and tables in a pdf document and maintains the structure of the document using a tree data structure.

This project is using the table-extraction tool (https://github.com/xiao-cheng/table-extraction).

Dependencies

pip install -r requirements.txt

Environment variables

First, set environment variables. The DATAPATH folder should contain the pdf files that need to be processed.

source set_env.sh

Tutorial

The table-extraction/tutorials/ folder contains a notebook table-extraction-demo.ipynb. In this demo we detail the different steps of the table extraction tool and display some examples of table detection results for paleo papers. However, to extract tables for new documents, the user should directly use the command line tool detailed in the next section.

Command Line Usage

To use the tool via command line, run:

source set_env.sh

python table-extraction/ml/extract_tables.py [-h]

usage: extract_tables.py [-h] [--mode MODE] [--train-pdf TRAIN_PDF]
                         [--test-pdf TEST_PDF] [--gt-train GT_TRAIN]
                         [--gt-test GT_TEST] [--model-path MODEL_PATH]
                         [--iou-thresh IOU_THRESH]

Script to extract tables bounding boxes from PDF files using a machine
learning approach. if model.pkl is saved in the model-path, the pickled model
will be used for prediction. Otherwise the model will be retrained. If --mode
is test (by default), the script will create a .bbox file containing the
tables for the pdf documents listed in the file --test-pdf. If --mode is dev,
the script will also extract ground truth labels fot the test data and compute
some statistics. To run the script on new documents, specify the path to the
list of pdf to analyze using the argument --test-pdf. Those files must be
saved in the DATAPATH folder.

optional arguments:
  -h, --help            show this help message and exit
  --mode MODE           usage mode dev or test, default is test
  --train-pdf TRAIN_PDF
                        list of pdf file names used for training. Those files
                        must be saved in the DATAPATH folder (cf set_env.sh)
                        must be saved in the DATAPATH folder (cf set_env.sh)
  --test-pdf TEST_PDF   list of pdf file names used for testing. Those files
                        must be saved in the DATAPATH folder (cf set_env.sh)
  --gt-train GT_TRAIN   ground truth train tables
  --gt-test GT_TEST     ground truth test tables
  --model-path MODEL_PATH
                        pretrained model
  --iou-thresh IOU_THRESH
                        intersection over union threshold to remove duplicate
                        tables

Each document must be saved in the DATAPATH folder.

The script will create a .bbox file where each row contains tables coordinates of the corresponding row document in the --test_pdf file.

The bounding boxes are stored in the format (page_num, page_width, page_height, top, left, bottom, right) and are separated with ";".

Evaluation

We provide an evaluation code to compute recall, precision and F1 score at the character level.

python table-extraction/evaluation/char_level_evaluation.py [-h] pdf_files extracted_bbox gt_bbox

usage: char_level_evaluation.py [-h] pdf_files extracted_bbox gt_bbox

Computes scores for the table localization task. Returns Recall and Precision
for the sub-objects level (characters in text). If DISPLAY=TRUE, display GT in
Red and extracted bboxes in Blue

positional arguments:
  pdf_files       list of paths of PDF file to process
  extracted_bbox  extracting bounding boxes (one line per pdf file)
  gt_bbox         ground truth bounding boxes (one line per pdf file)

optional arguments:
  -h, --help      show this help message and exit
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Make OpenCV camera loops less of a chore by skipping the boilerplate and getting right to the interesting stuff

camloop Forget the boilerplate from OpenCV camera loops and get to coding the interesting stuff Table of Contents Usage Install Quickstart More advanc

Gabriel Lefundes 9 Nov 12, 2021
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector

CRAFT: Character-Region Awareness For Text detection Packaged, Pytorch-based, easy to use, cross-platform version of the CRAFT text detector | Paper |

188 Dec 28, 2022
Official implementation of Character Region Awareness for Text Detection (CRAFT)

CRAFT: Character-Region Awareness For Text detection Official Pytorch implementation of CRAFT text detector | Paper | Pretrained Model | Supplementary

Clova AI Research 2.5k Jan 03, 2023
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
Deskew is a command line tool for deskewing scanned text documents. It uses Hough transform to detect "text lines" in the image. As an output, you get an image rotated so that the lines are horizontal.

Deskew by Marek Mauder https://galfar.vevb.net/deskew https://github.com/galfar/deskew v1.30 2019-06-07 Overview Deskew is a command line tool for des

Marek Mauder 127 Dec 03, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video

動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ

Yoshitsugu Kesamaru 6 Feb 03, 2022
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Satoshi is a discord bot template in python using discord.py that allow you to track some live crypto prices with your own discord bot.

Satoshi ~ DiscordCryptoBot Satoshi is a simple python discord bot using discord.py that allow you to track your favorites cryptos prices with your own

Théo 2 Sep 15, 2022
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Official code for "Bridging Video-text Retrieval with Multiple Choice Questions", CVPR 2022 (Oral).

Bridging Video-text Retrieval with Multiple Choice Questions, CVPR 2022 (Oral) Paper | Project Page | Pre-trained Model | CLIP-Initialized Pre-trained

Applied Research Center (ARC), Tencent PCG 99 Jan 06, 2023
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
Simple app for visual editing of Page XML files

Name nw-page-editor - Simple app for visual editing of Page XML files. Version: 2021.02.22 Description nw-page-editor is an application for viewing/ed

Mauricio Villegas 27 Jun 20, 2022
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022