Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

Overview

JIGSAW: An unstructured mesh generator

JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulations and polyhedral decompositions of general planar, surface and volumetric domains. JIGSAW includes refinement-based algorithms for the construction of new meshes, optimisation-driven techniques for the improvement of existing grids, as well as routines to assemble (restricted) Delaunay tessellations, Voronoi complexes and Power diagrams.

This package provides a Python based scripting interface to the underlying JIGSAW mesh generator, including a range of additional facilities for file I/O, mesh visualisation and post-processing operations.

JIGSAW has been compiled and tested on various 64-bit Linux , Windows and Mac based platforms.

Quickstart

Ensure you have a c++ compiler and the cmake utility installed.
Clone/download + unpack this repository.
python3 setup.py build_external
python3 setup.py install
python3 example.py --IDnumber=0

Note: installation of JIGSAW requires a c++ compiler and the cmake utility. JIGSAW may also be installed as a conda package. See here for details.

Function Listing

See jigsawpy for a description of the various functions available.

setup.py    - compile and install JIGSAW's c++ backend using cmake.
example.py  - a list of demo programs. 

jigsaw.py   - cmd-line interface to JIGSAW's backend
libsaw.py   - api-lib. interface to JIGSAW's backend

loadmsh.py  - load *.msh files.
savemsh.py  - save *.msh files.
loadjig.py  - load *.jig files.
savejig.py  - save *.jig files.

project.py  - apply cartographic projection operators to mesh obj.

bisect.py   - refine a mesh obj. via bisection.
extrude.py  - create a mesh obj. via extrusion.

Example Problems

The following set of example problems are available in example.py:

example: 0; # simple 2-dim. examples to get started
example: 1; # simple 3-dim. examples to get started
example: 2; # frontal-delaunay methods in the plane
example: 3; # frontal-delaunay methods for surfaces
example: 4; # frontal-delaunay methods for volumes
example: 5; # user-defined mesh-spacing constraints
example: 6; # dealing with sharp-features in piecewise smooth domains
example: 7; # dealing with sharp-features in piecewise smooth domains
example: 8; # (re)mesh marching-cubes style outputs
example: 9; # creating prismatic volumes via extrusion

Run python3 example.py --IDnumber=N to call the N-th example. *.vtk output is saved to ../cache and can be visualised with, for example, Paraview.

License

This program may be freely redistributed under the condition that the copyright notices (including this entire header) are not removed, and no compensation is received through use of the software. Private, research, and institutional use is free. You may distribute modified versions of this code UNDER THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT WITH THE AUTHOR. (If you are not directly supplying this code to a customer, and you are instead telling them how they can obtain it for free, then you are not required to make any arrangement with me.)

DISCLAIMER: Neither I nor: Columbia University, the Massachusetts Institute of Technology, the University of Sydney, nor the National Aeronautics and Space Administration warrant this code in any way whatsoever. This code is provided "as-is" to be used at your own risk.

References

There are a number of publications that describe the algorithms used in JIGSAW in detail. If you make use of JIGSAW in your work, please consider including a reference to the following:

[1] - Darren Engwirda: Generalised primal-dual grids for unstructured co-volume schemes, J. Comp. Phys., 375, pp. 155-176, https://doi.org/10.1016/j.jcp.2018.07.025, 2018.

[2] - Darren Engwirda, Conforming Restricted Delaunay Mesh Generation for Piecewise Smooth Complexes, Procedia Engineering, 163, pp. 84-96, https://doi.org/10.1016/j.proeng.2016.11.024, 2016.

[3] - Darren Engwirda, Voronoi-based Point-placement for Three-dimensional Delaunay-refinement, Procedia Engineering, 124, pp. 330-342, http://dx.doi.org/10.1016/j.proeng.2015.10.143, 2015.

[4] - Darren Engwirda, David Ivers, Off-centre Steiner points for Delaunay-refinement on curved surfaces, Computer-Aided Design, 72, pp. 157-171, http://dx.doi.org/10.1016/j.cad.2015.10.007, 2016.

[5] - Darren Engwirda, Locally-optimal Delaunay-refinement and optimisation-based mesh generation, Ph.D. Thesis, School of Mathematics and Statistics, The University of Sydney, http://hdl.handle.net/2123/13148, 2014.

Comments
  • pathlib requirement

    pathlib requirement

    pathlib is listed as a requirement for all python versions, but it is part of the system in python >=3.4 (i.e. all currently supported version of python). Because of this dependency, pip check fails when jigsawpy is installed for python 3.x. I would request that it either be removed as a dependency in the next release or that it be constrained to python versions before 3.4.

    https://docs.python.org/3/library/pathlib.html

    enhancement 
    opened by xylar 9
  • The python package includes the `tests` directory

    The python package includes the `tests` directory

    Because of the line: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/setup.py#L135 the tests directory is being included in the conda-forge (and presumably the pypi) package. This directory should be excluded, or better yet only jigsawpy should be included:

    packages=find_packages(include=['jigsawypy', 'jigsawpy.*'])
    
    for-next-release 
    opened by xylar 5
  • Add call to find_library

    Add call to find_library

    This helps Windows find jigsaw.dll without a full path name.

    A similar call seems not to be needed for Linux and not to work for OSX.

    I created a patch identical to this in the conda-forge recipe: https://github.com/conda-forge/staged-recipes/pull/10842/commits/b8d1bc4d9cffadf1c8ca62069d5f6e676cc271e4

    opened by xylar 1
  • Update to jigsaw-0.9.15.x

    Update to jigsaw-0.9.15.x

    • Update to jigsaw-0.9.15.x.
    • Fix an i/o bug in handling of jig_t objects.
    • Fix an array-size bug in orthoball routines.
    • Add support for "jumbled" meshes.
    • Remove pathlib from REQUIRED in setup.py.
    • Support ellipsoidal-type initial conditions.
    • BREAKING: encode h(x) values as 32-bit floating point data to support "very-large" h(x) types.
    opened by dengwirda 0
  • Accelerating rDT mesh and optm iter.

    Accelerating rDT mesh and optm iter.

    Hello, I was wondering if there is any way to speed up the rDT mesh and Mesh optm parts of the jigsaw-python subtree source. Currently, I am compiling with gcc-11, using the standard CMake approach (maybe there's an optimization switch I haven't enabled?). I tried compiling it with intel 2018 and 2019 but I wasn't successful with the compilation. Any ideas on achieving some speed-ups will be greatly appreciated. Thanks, -J.

    opened by jreniel 0
  • Consider using specific exceptions rather than generic `Exception`

    Consider using specific exceptions rather than generic `Exception`

    I don't find the exceptions raised by jigsawpy to be very intuitive, and I think that might be true for most python users.

    As an example: https://github.com/dengwirda/jigsaw-python/blob/f87571945975b4882d8c27bdfff9275f6e46baa8/jigsawpy/savemsh.py#L613

    I would expect something like:

        if (not isinstance(name, str)):
            raise TypeError("Argument 'name' to savemsh should be of type str")
    

    As I understand it, the generic Exception class is only intended as a base class for exceptions and shouldn't be used directly.

    Python is case sensitive so the use of NAME here also led to some confusion for me.

    for-next-release 
    opened by xylar 6
  • Still getting output to the terminal with `opts.verbosity = -1`

    Still getting output to the terminal with `opts.verbosity = -1`

    I was told that opts.verbosity = -1 should mean that no output went to the terminal window, just to the log file. But I am finding that I still get terminal output when I have this option set. I verified that the .jig file does, indeed have:

      VERBOSITY=-1
    

    but I still see something like this to the terminal:

    #------------------------------------------------------------
    #
    #   ,o, ,o,       /                                 
    #    `   `  e88~88e  d88~\   /~~~8e Y88b    e    / 
    #   888 888 88   88 C888         88b Y88b  d8b  /   
    #   888 888 "8b_d8"  Y88b   e88~-888  Y888/Y88b/  
    #   888 888  /        888D C88   888   Y8/  Y8/     
    #   88P 888 Cb      \_88P   "8b_-888    Y    Y    
    # \_8"       Y8""8D                             
    #
    #------------------------------------------------------------
    # JIGSAW: an unstructured mesh generation library.  
    #------------------------------------------------------------
    ...
    
    bug for-next-release 
    opened by xylar 2
  • Cannot create an icosahedral mesh without providing a mesh argument

    Cannot create an icosahedral mesh without providing a mesh argument

    It seems the intention is that one can create an icosahedral mesh without passing a mesh object: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/init.py#L105 but when I try this:

            jigsawpy.cmd.icosahedron(opts, subdivisions)
    

    I get:

    Traceback (most recent call last):
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/bin/compass", line 33, in <module>
        sys.exit(load_entry_point('compass', 'console_scripts', 'compass')())
      File "/home/xylar/code/compass/separate_mesh_steps/compass/__main__.py", line 63, in main
        commands[args.command]()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 281, in main
        run_step()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/run/serial.py", line 249, in run_step
        test_case.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/ocean/tests/global_ocean/mesh/__init__.py", line 109, in run
        super().run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 190, in run
        self._run_step(step, self.new_step_log_file)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/testcase.py", line 306, in _run_step
        step.run()
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 350, in run
        self.make_jigsaw_mesh(subdivisions)
      File "/home/xylar/code/compass/separate_mesh_steps/compass/mesh/spherical.py", line 376, in make_jigsaw_mesh
        jigsawpy.cmd.icosahedron(opts, subdivisions)
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/__init__.py", line 106, in icosahedron
        return jigsaw.icosahedron(
      File "/home/xylar/miniconda3/envs/compass_jigsaw_mesh/lib/python3.9/site-packages/jigsawpy/jigsaw.py", line 597, in icosahedron
        raise Exception("Incorrect type: MESH.")
    Exception: Incorrect type: MESH.
    

    It seems that this check: https://github.com/dengwirda/jigsaw-python/blob/b6e455c22696568f90a7428a49e03c980892c923/jigsawpy/jigsaw.py#L519-L520 should check for None:

        if (mesh is not None and not isinstance(mesh, jigsaw_msh_t)):
            raise Exception("Incorrect type: MESH.")
    
    bug for-next-release 
    opened by xylar 2
  • pip, setup, build_external, etc

    pip, setup, build_external, etc

    Are the method(s) used to install binaries sufficient? Currently, two options are supported:

    1. setup.py build_external, etc builds and installs the jigsaw-cpp binaries within jigsawpy itself.
    2. If no local binaries are found, a global search of the machine path is done to pick them up in, e.g. usr/local/bin, etc --- used by the conda-based workflow.

    @jreniel has suggested installing to the python environment directory, either as a 3rd option, or, perhaps(?) a replacement for 1.

    Should also work out what's needed to make jigsawpy available for direct install via pip.

    enhancement 
    opened by dengwirda 6
Releases(v0.3.3)
Owner
Darren Engwirda
Computational scientist at LANL --- climate modelling, unstructured grids, numerical methods.
Darren Engwirda
https://arxiv.org/abs/1904.01941

Character-Region-Awareness-for-Text-Detection- https://arxiv.org/abs/1904.01941 Train You can train SynthText data use python source/train_SynthText.p

DayDayUp 120 Dec 28, 2022
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
CNN+Attention+Seq2Seq

Attention_OCR CNN+Attention+Seq2Seq The model and its tensor transformation are shown in the figure below It is necessary ch_ train and ch_ test the p

Tsukinousag1 2 Jul 14, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)

Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described

Tian Zhi 1.3k Dec 22, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021