The training code for the 4th place model at MDX 2021 leaderboard A.

Overview

This repository contains the training code of our winning model at Music Demixing Challenge 2021, which got the 4th place on leaderboard A (6th in overall), and help us (Kazane Ryo no Danna) winned the bronze prize.

Model Summary

Our final winning approach blends the outputs from three models, which are:

  1. model 1: A X-UMX model [1] which is initialized with the weights of the official baseline, and is fine-tuned with a modified Combinational Multi-Domain Loss from [1]. In particular, we implement and apply a differentiable Multichannel Wiener Filter (MWF) [2] before the loss calculation, and compute the frequency-domain L2 loss with raw complex values.

  2. model 2: A U-Net which is similar to Spleeter [3], where all convolution layers are replaced by D3 Blocks from [4], and two layers of 2D local attention are applied at the bottleneck similar to [5].

  3. model 3: A modified version of Demucs [6], where the original decoding module is replaced by four independent decoders, each of which corresponds to one source.

We didn't encounter overfitting in our pilot experiments, so we used the full musdb training set for all the models above, and stopped training upon convergence of the loss function.

The weights of the three outputs are determined empirically:

Drums Bass Other Vocals
model 1 0.2 0.1 0 0.2
model 2 0.2 0.17 0.5 0.4
model 3 0.6 0.73 0.5 0.4

For the spectrogram-based models (model 1 and 2), we apply MWF to the outputs with one iteration before the fusion.

[1] Sawata, Ryosuke, et al. "All for One and One for All: Improving Music Separation by Bridging Networks." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.

[2] Antoine Liutkus, & Fabian-Robert Stöter. (2019). sigsep/norbert: First official Norbert release (v0.2.0). Zenodo. https://doi.org/10.5281/zenodo.3269749

[3] Hennequin, Romain, et al. "Spleeter: a fast and efficient music source separation tool with pre-trained models." Journal of Open Source Software 5.50 (2020): 2154.

[4] Takahashi, Naoya, and Yuki Mitsufuji. "D3net: Densely connected multidilated densenet for music source separation." arXiv preprint arXiv:2010.01733 (2020).

[5] Wu, Yu-Te, Berlin Chen, and Li Su. "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020): 2796-2809.

[6] Défossez, Alexandre, et al. "Music source separation in the waveform domain." arXiv preprint arXiv:1911.13254 (2019).

How to reproduce the training

Install Requirements / Build Virtual Environment

We recommend using conda.

conda env create -f environment.yml
conda activate demixing

Prepare Data

Please download musdb, and edit the "root" parameters in all the json files listed under configs/ to the path where you have the dataset.

Training Model 1

First download the pre-trained model:

wget https://zenodo.org/record/4740378/files/pretrained_xumx_musdb18HQ.pth

Copy the weights for initializing our model:

python xumx_weights_convert.py pretrained_xumx_musdb18HQ.pth xumx_weights.pth

Start training!

python train.py configs/x_umx_mwf.json --weights xumx_weights.pth

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070.

Training Model 2

python train.py configs/unet_attn.json --device_ids 0 1 2 3

Checkpoints will be located under saved/. The config was set to run on four Tesla V100.

Training Model 3

python train.py configs/demucs_split.json

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070, using gradient accumulation and mixed precision training.

Tensorboard Logging

You can monitor the training process using tensorboard:

tesnorboard --logdir runs/

Inference

First make sure you installed danna-sep. Then convert your checkpoints into jit scripts and replace the files under DANNA_CHECKPOINTS:

python jit_convert.py configs/x_umx_mwf.json saved/CrossNet\ Open-Unmix_checkpoint_XXX.pt $DANNA_CHECKPOINTS/xumx_mwf.pth

python jit_convert.py configs/unet_attn.json saved/UNet\ Attention_checkpoint_XXX.pt $DANNA_CHECKPOINTS/unet_attention.pth

python jit_convert.py configs/demucs_split.json saved/DemucsSplit_checkpoint_XXX.pt $DANNA_CHECKPOINTS/demucs_4_decoders.pth

Now you can use danna-sep to separate you favorite music and see how it works!

Additional Resources

Owner
Chin-Yun Yu
I'm a Djentle man. When I hear 0000000 I click like.
Chin-Yun Yu
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022