The training code for the 4th place model at MDX 2021 leaderboard A.

Overview

This repository contains the training code of our winning model at Music Demixing Challenge 2021, which got the 4th place on leaderboard A (6th in overall), and help us (Kazane Ryo no Danna) winned the bronze prize.

Model Summary

Our final winning approach blends the outputs from three models, which are:

  1. model 1: A X-UMX model [1] which is initialized with the weights of the official baseline, and is fine-tuned with a modified Combinational Multi-Domain Loss from [1]. In particular, we implement and apply a differentiable Multichannel Wiener Filter (MWF) [2] before the loss calculation, and compute the frequency-domain L2 loss with raw complex values.

  2. model 2: A U-Net which is similar to Spleeter [3], where all convolution layers are replaced by D3 Blocks from [4], and two layers of 2D local attention are applied at the bottleneck similar to [5].

  3. model 3: A modified version of Demucs [6], where the original decoding module is replaced by four independent decoders, each of which corresponds to one source.

We didn't encounter overfitting in our pilot experiments, so we used the full musdb training set for all the models above, and stopped training upon convergence of the loss function.

The weights of the three outputs are determined empirically:

Drums Bass Other Vocals
model 1 0.2 0.1 0 0.2
model 2 0.2 0.17 0.5 0.4
model 3 0.6 0.73 0.5 0.4

For the spectrogram-based models (model 1 and 2), we apply MWF to the outputs with one iteration before the fusion.

[1] Sawata, Ryosuke, et al. "All for One and One for All: Improving Music Separation by Bridging Networks." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.

[2] Antoine Liutkus, & Fabian-Robert Stöter. (2019). sigsep/norbert: First official Norbert release (v0.2.0). Zenodo. https://doi.org/10.5281/zenodo.3269749

[3] Hennequin, Romain, et al. "Spleeter: a fast and efficient music source separation tool with pre-trained models." Journal of Open Source Software 5.50 (2020): 2154.

[4] Takahashi, Naoya, and Yuki Mitsufuji. "D3net: Densely connected multidilated densenet for music source separation." arXiv preprint arXiv:2010.01733 (2020).

[5] Wu, Yu-Te, Berlin Chen, and Li Su. "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020): 2796-2809.

[6] Défossez, Alexandre, et al. "Music source separation in the waveform domain." arXiv preprint arXiv:1911.13254 (2019).

How to reproduce the training

Install Requirements / Build Virtual Environment

We recommend using conda.

conda env create -f environment.yml
conda activate demixing

Prepare Data

Please download musdb, and edit the "root" parameters in all the json files listed under configs/ to the path where you have the dataset.

Training Model 1

First download the pre-trained model:

wget https://zenodo.org/record/4740378/files/pretrained_xumx_musdb18HQ.pth

Copy the weights for initializing our model:

python xumx_weights_convert.py pretrained_xumx_musdb18HQ.pth xumx_weights.pth

Start training!

python train.py configs/x_umx_mwf.json --weights xumx_weights.pth

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070.

Training Model 2

python train.py configs/unet_attn.json --device_ids 0 1 2 3

Checkpoints will be located under saved/. The config was set to run on four Tesla V100.

Training Model 3

python train.py configs/demucs_split.json

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070, using gradient accumulation and mixed precision training.

Tensorboard Logging

You can monitor the training process using tensorboard:

tesnorboard --logdir runs/

Inference

First make sure you installed danna-sep. Then convert your checkpoints into jit scripts and replace the files under DANNA_CHECKPOINTS:

python jit_convert.py configs/x_umx_mwf.json saved/CrossNet\ Open-Unmix_checkpoint_XXX.pt $DANNA_CHECKPOINTS/xumx_mwf.pth

python jit_convert.py configs/unet_attn.json saved/UNet\ Attention_checkpoint_XXX.pt $DANNA_CHECKPOINTS/unet_attention.pth

python jit_convert.py configs/demucs_split.json saved/DemucsSplit_checkpoint_XXX.pt $DANNA_CHECKPOINTS/demucs_4_decoders.pth

Now you can use danna-sep to separate you favorite music and see how it works!

Additional Resources

Owner
Chin-Yun Yu
I'm a Djentle man. When I hear 0000000 I click like.
Chin-Yun Yu
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022