A PyTorch implementation of SIN: Superpixel Interpolation Network

Related tags

Deep LearningSIN
Overview

SIN: Superpixel Interpolation Network

This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

SIN: Superpixel Interpolation Network

Prerequisites

The training code was mainly developed and tested with python 3.6, PyTorch 1.4, CUDA 10, and Ubuntu 18.04.

Demo

The demo script run_demo.py provides the superpixels with grid size 16 x 16 using our pre-trained model (in /pretrained_ckpt). Please feel free to provide your own images by copying them into /demo/inputs, and run

python run_demo.py --data_dir=./demo/inputs --data_suffix=jpg --output=./demo 

The results will be generate in a new folder under /demo called spixel_viz.

Data preparation

To generate training and test dataset, please first download the data from the original BSDS500 dataset, and extract it to . Then, run

cd data_preprocessing
python pre_process_bsd500.py --dataset=
   
     --dump_root=
    
     
python pre_process_bsd500_ori_sz.py --dataset=
     
       --dump_root=
      
       
cd ..

      
     
    
   

The code will generate three folders under the , named as /train, /val, and /test, and three .txt files record the absolute path of the images, named as train.txt, val.txt, and test.txt.

Training

Once the data is prepared, we should be able to train the model by running the following command

python main.py --data=
   
     --savepath=
    

    
   

if we wish to continue a train process or fine-tune from a pre-trained model, we can run

python main.py --data=
   
     --savepath=
    
      --pretrained=
      

     
    
   

The code will start from the recorded status, which includes the optimizer status and epoch number.

The training log can be viewed from the tensorboard session by running

tensorboard --logdir=
   
     --port=8888

   

Testing

We provide test code to generate: 1) superpixel visualization and 2) the.csv files for evaluation.

To test on BSDS500, run

python run_infer_bsds.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on NYUv2, please follow the intruction on the superpixel benchmark to generate the test dataset, and then run

python run_infer_nyu.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on other datasets, please first collect all the images into one folder , and then convert them into the same format (e.g. .png or .jpg) if necessary, and run

python run_demo.py --data_dir=
   
     --data_suffix=
    
      --output=
     
       --pretrained=
      

      
     
    
   

Superpixels with grid size 16 x 16 will be generated by default. To generate the superpixel with a different grid size, we simply need to resize the images into the approporate resolution before passing them through the code. Please refer to run_infer_nyu.py for the details.

Evaluation

We use the code from superpixel benchmark for superpixel evaluation. A detailed instruction is available in the repository, please

(1) download the code and build it accordingly;

(2) edit the variables $SUPERPIXELS, IMG_PATH and GT_PATH in /eval_spixel/my_eval.sh,

(3) run

cp /eval_spixel/my_eval.sh 
   
    /examples/bash/
cd  
    
     /examples/
bash my_eval.sh

    
   

several files should be generated in the map_csv folders in the corresponding test outputs;

(4) run

cd eval_spixel
python copy_resCSV.py --src=
   
     --dst=
    

    
   

(5) open /eval_spixel/plot_benchmark_curve.m , set the our1l_res_path as and modify the num_list according to the test setting. The default setting is for our BSDS500 test set.;

(6) run the plot_benchmark_curve.m, the ASA Score, CO Score, and BR-BP curve of our method should be shown on the screen. If you wish to compare our method with the others, you can first run the method and organize the data as we state above, and uncomment the code in the plot_benchmark_curve.m to generate a similar figure shown in our papers.

Acknowledgement

The code is implemented based on superpixel_fcn. We would like to express our sincere thanks to the contributors.

Cite

If you use SIN in your work please cite our paper:

@article{yuan2021sin,
title={SIN: Superpixel Interpolation Network},
author={Qing Yuan, Songfeng Lu, Yan Huang, Wuxin Sha},
booktitle={PRICAI},
year={2021}
}

This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022