A PyTorch implementation of SIN: Superpixel Interpolation Network

Related tags

Deep LearningSIN
Overview

SIN: Superpixel Interpolation Network

This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

SIN: Superpixel Interpolation Network

Prerequisites

The training code was mainly developed and tested with python 3.6, PyTorch 1.4, CUDA 10, and Ubuntu 18.04.

Demo

The demo script run_demo.py provides the superpixels with grid size 16 x 16 using our pre-trained model (in /pretrained_ckpt). Please feel free to provide your own images by copying them into /demo/inputs, and run

python run_demo.py --data_dir=./demo/inputs --data_suffix=jpg --output=./demo 

The results will be generate in a new folder under /demo called spixel_viz.

Data preparation

To generate training and test dataset, please first download the data from the original BSDS500 dataset, and extract it to . Then, run

cd data_preprocessing
python pre_process_bsd500.py --dataset=
   
     --dump_root=
    
     
python pre_process_bsd500_ori_sz.py --dataset=
     
       --dump_root=
      
       
cd ..

      
     
    
   

The code will generate three folders under the , named as /train, /val, and /test, and three .txt files record the absolute path of the images, named as train.txt, val.txt, and test.txt.

Training

Once the data is prepared, we should be able to train the model by running the following command

python main.py --data=
   
     --savepath=
    

    
   

if we wish to continue a train process or fine-tune from a pre-trained model, we can run

python main.py --data=
   
     --savepath=
    
      --pretrained=
      

     
    
   

The code will start from the recorded status, which includes the optimizer status and epoch number.

The training log can be viewed from the tensorboard session by running

tensorboard --logdir=
   
     --port=8888

   

Testing

We provide test code to generate: 1) superpixel visualization and 2) the.csv files for evaluation.

To test on BSDS500, run

python run_infer_bsds.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on NYUv2, please follow the intruction on the superpixel benchmark to generate the test dataset, and then run

python run_infer_nyu.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on other datasets, please first collect all the images into one folder , and then convert them into the same format (e.g. .png or .jpg) if necessary, and run

python run_demo.py --data_dir=
   
     --data_suffix=
    
      --output=
     
       --pretrained=
      

      
     
    
   

Superpixels with grid size 16 x 16 will be generated by default. To generate the superpixel with a different grid size, we simply need to resize the images into the approporate resolution before passing them through the code. Please refer to run_infer_nyu.py for the details.

Evaluation

We use the code from superpixel benchmark for superpixel evaluation. A detailed instruction is available in the repository, please

(1) download the code and build it accordingly;

(2) edit the variables $SUPERPIXELS, IMG_PATH and GT_PATH in /eval_spixel/my_eval.sh,

(3) run

cp /eval_spixel/my_eval.sh 
   
    /examples/bash/
cd  
    
     /examples/
bash my_eval.sh

    
   

several files should be generated in the map_csv folders in the corresponding test outputs;

(4) run

cd eval_spixel
python copy_resCSV.py --src=
   
     --dst=
    

    
   

(5) open /eval_spixel/plot_benchmark_curve.m , set the our1l_res_path as and modify the num_list according to the test setting. The default setting is for our BSDS500 test set.;

(6) run the plot_benchmark_curve.m, the ASA Score, CO Score, and BR-BP curve of our method should be shown on the screen. If you wish to compare our method with the others, you can first run the method and organize the data as we state above, and uncomment the code in the plot_benchmark_curve.m to generate a similar figure shown in our papers.

Acknowledgement

The code is implemented based on superpixel_fcn. We would like to express our sincere thanks to the contributors.

Cite

If you use SIN in your work please cite our paper:

@article{yuan2021sin,
title={SIN: Superpixel Interpolation Network},
author={Qing Yuan, Songfeng Lu, Yan Huang, Wuxin Sha},
booktitle={PRICAI},
year={2021}
}

Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023