Implementation of deep learning models for time series in PyTorch.

Overview

List of Implementations:

Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks https://arxiv.org/abs/1704.04110) is available in PyTorch. More papers will be coming soon.

Authors:

  • Yunkai Zhang([email protected]) - University of California, Santa Barbara

  • Qiao Jiang - Brown University

  • Xueying Ma - Columbia University

  • Acknowledgement: Professor Xifeng Yan's group at UC Santa Barbara. Part of the work was done at WeWork.

To run:

  1. Install all dependencies listed in requirements.txt. Note that the model has only been tested in the versions shown in the text file.

  2. Download the dataset and preprocess the data:

    python preprocess_elect.py
  3. Start training:

    python train.py
    • If you want to perform ancestral sampling,

      python train.py --sampling
    • If you do not want to do normalization during evaluation,

      python train.py --relative-metrics
  4. Evaluate a set of saved model weights:

    python evaluate.py
  5. Perform hyperparameter search:

     python search_params.py

Results

​ The model is evaluated on the electricity dataset, which contains the electricity consumption of 370 households from 2011 to 2014. Under hourly frequency, we use the first week of September, 2014 as the test set and all time steps prior to that as the train set. Following the experiment design in DeepAR, the window size is chosen to be 192, where the last 24 is the forecasting horizon. History (number of time steps since the beginning of each household), month of the year, day of the week, and hour of the day are used as time covariates. Notice that some households started at different times, so we only use windows that contain non-missing values.

​ Under Gaussian likelihood, we use the Adam optimizer with early stopping to train the model for 20 epoches. The same set of hyperparameters is used as outlined in the paper. Weights with the best ND value is selected, where ND = 0.06349, RMSE = 0.452, rou90 = 0.034 and rou50 = 0.063.

​ Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Sample results on electricity. The top 10 plots are sampled from the test set with the highest 10% ND values, whereas the bottom 10 plots are sampled from the rest of the test set.

Owner
Yunkai Zhang
IEOR PhD @ UC Berkeley, math/computing @ UCSB CCS
Yunkai Zhang
PLUR is a collection of source code datasets suitable for graph-based machine learning.

PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the

Google Research 76 Nov 25, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022