Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Overview

Amplo - AutoML (for Machine Data)

image PyPI - License

Welcome to the Automated Machine Learning package Amplo. Amplo's AutoML is designed specifically for machine data and works very well with tabular time series data (especially unbalanced classification!).

Though this is a standalone Python package, Amplo's AutoML is also available on Amplo's Smart Maintenance Platform. With a graphical user interface and various data connectors, it is the ideal place for service engineers to get started on Predictive.

Amplo's AutoML Pipeline contains the entire Machine Learning development cycle, including exploratory data analysis, data cleaning, feature extraction, feature selection, model selection, hyper parameter optimization, stacking, version control, production-ready models and documentation. It comes with additional tools such as interval analysers, drift detectors, data quality checks, etc.

Downloading Amplo

The easiest way is to install our Python package through PyPi:

pip install Amplo

2. Usage

Usage is very simple with Amplo's AutoML Pipeline.

from Amplo import Pipeline
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression


x, y = make_classification()
pipeline = Pipeline()
pipeline.fit(x, y)
yp = pipeline.predict_proba(x)

x, y = make_regression()
pipeline = Pipeline()
pipeline.fit(x, y)
yp = pipeline.predict(x)

3. Amplo AutoML Features

Interval Analyser

from Amplo.AutoML import IntervalAnalyser

Interval Analyser for Log file classification. When log files have to be classified, and there is not enough data for time series methods (such as LSTMs, ROCKET or Weasel, Boss, etc), one needs to fall back to classical machine learning models which work better with lower samples. This raises the problem of which samples to classify. You shouldn't just simply classify on every sample and accumulate, that may greatly disrupt classification performance. Therefore, we introduce this interval analyser. By using an approximate K-Nearest Neighbors algorithm, one can estimate the strength of correlation for every sample inside a log. Using this allows for better interval selection for classical machine learning models.

To use this interval analyser, make sure that your logs are located in a folder of their class, with one parent folder with all classes, e.g.:

+-- Parent Folder
|   +-- Class_1
|       +-- Log_1.*
|       +-- Log_2.*
|   +-- Class_2
|       +-- Log_3.*

Exploratory Data Analysis

from Amplo.AutoML import DataExplorer

Automated Exploratory Data Analysis. Covers binary classification and regression. It generates:

  • Missing Values Plot
  • Line Plots of all features
  • Box plots of all features
  • Co-linearity Plot
  • SHAP Values
  • Random Forest Feature Importance
  • Predictive Power Score

Additional plots for Regression:

  • Seasonality Plots
  • Differentiated Variance Plot
  • Auto Correlation Function Plot
  • Partial Auto Correlation Function Plot
  • Cross Correlation Function Plot
  • Scatter Plots

Data Processing

from Amplo.AutoML import DataProcesser

Automated Data Cleaning:

  • Infers & converts data types (integer, floats, categorical, datetime)
  • Reformats column names
  • Removes duplicates columns and rows
  • Handles missing values by:
    • Removing columns
    • Removing rows
    • Interpolating
    • Filling with zero's
  • Removes outliers using:
    • Clipping
    • Z-score
    • Quantiles
  • Removes constant columns

Data Sampler

from Amplo.AutoML import DataSampler

This pipeline is designed to handle unbalanced classification problems. Aside weighted loss functions, under sampling the majority class or down sampling the minority class helps. Various algorithms are analysed:

  • SMOTE
  • Borderline SMOTE
  • Random Over Sampler
  • Tomek Links
  • One Sided Selection
  • Random Under Sampler
  • Edited Nearest Neighbours
  • SMOTE Tomek
  • SMOTE Edited Nearest Neighbours

Feature Processing

from Amplo.AutoML import FeatureProcesser

Automatically extracts and selects features. Removes Co-Linear Features. Included Feature Extraction algorithms:

  • Multiplicative Features
  • Dividing Features
  • Additive Features
  • Subtractive Features
  • Trigonometric Features
  • K-Means Features
  • Lagged Features
  • Differencing Features
  • Inverse Features
  • Datetime Features

Included Feature Selection algorithms:

  • Random Forest Feature Importance (Threshold and Increment)
  • Predictive Power Score

Sequencing

from Amplo.AutoML import Sequencer

For time series regression problems, it is often useful to include multiple previous samples instead of just the latest. This class sequences the data, based on which time steps you want included in the in- and output. This is also very useful when working with tensors, as a tensor can be returned which directly fits into a Recurrent Neural Network.

Modelling

from Amplo.AutoML import Modeller

Runs various regression or classification models. Includes:

  • Scikit's Linear Model
  • Scikit's Random Forest
  • Scikit's Bagging
  • Scikit's GradientBoosting
  • Scikit's HistGradientBoosting
  • DMLC's XGBoost
  • Catboost's Catboost
  • Microsoft's LightGBM
  • Stacking Models

Grid Search

from Amplo.GridSearch import *

Contains three hyper parameter optimizers with extended predefined model parameters:

  • Grid Search
  • Halving Random Search
  • Optuna's Tree-Parzen-Estimator

Automatic Documntation

from Amplo.AutoML import Documenter

Contains a documenter for classification (binary and multiclass problems), as well as for regression. Creates a pdf report for a Pipeline, including metrics, data processing steps, and everything else to recreate the result.

You might also like...
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

MachineLearningStocks is designed to be an intuitive and highly extensible template project applying machine learning to making stock predictions.
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

MLBox is a powerful Automated Machine Learning python library.
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Releases(v0.10.2)
Owner
Amplo
Zurich based SaaS startup providing a Smart Maintenance Platform
Amplo
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Model factory is a ML training platform to help engineers to build ML models at scale

Model Factory Machine learning today is powering many businesses today, e.g., search engine, e-commerce, news or feed recommendation. Training high qu

16 Sep 23, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Azure Cloud Advocates at Microsoft are pleased to offer a 12-week, 24-lesson curriculum all about Machine Learning

Microsoft 43.4k Jan 04, 2023
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023