PyTorch source code for Distilling Knowledge by Mimicking Features

Overview

LSHFM.detection

This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection with mimicking features. For image classification, please visit LSHFM.classification.

dependence

  • python
  • pytorch 1.7.1
  • torchvision 0.8.2

Prepare the dataset

Please prepare the COCO and VOC datasets by youself. Then you need to fix the get_data_path function in src/dataset/coco_utils.py and src/dataset/voc_utils.py.

Run

You can run the experiments by

PORT=4444 bash experiments/[script name].sh 0,1,2,3 

the training set contains VOC2007 trainval and VOC2012 trainval, while the testing set is VOC2007 test.

We train all models by 24 epochs while the learning rate decays at the 18th and 22th epoch.

Faster R-CNN

Before you run the KD experiments, please make sure the teacher model weight have been saved in pretrained. You can first run ResNet101 baseline and VGG16 baseline to train the teacher model, and then move the model to pretrained and edit --teacher-ckpt in the training shell scripts. You can also download voc0712_fasterrcnn_r101_83.6 and voc0712_fasterrcnn_vgg16fpn_79.0 directly, and move them to pretrained.

[email protected] [email protected]
Teacher 83.6 79.0
Student 82.0 75.1
L2 83.0 76.8
LSH 82.6 76.7
LSHL2 83.0 77.2

RetinaNet

As mentioned in Faster R-CNN, please make sure there are teacher models in pretrained. You can download the teacher models in voc0712_retinanet_r101_83.0.ckpt and voc0712_retinanet_vgg16fpn_76.6.ckpt.

[email protected] [email protected]
Teacher 83.0 76.6
Student 82.5 73.2
L2 82.6 74.8
LSHL2 83.0 75.2

We find that it is easy to get NaN loss when training by LSH KD.

visualize

visualize the ground truth label

python src/visual.py --dataset voc07 --idx 1 --gt

visualize the model prediction

python src/visual.py --dataset voc07 --idx 2 --model fasterrcnn_resnet50_fpn --checkpoint results/voc0712/fasterrcnn_resnet50_fpn/2020-12-11_20\:14\:09/model_13.pth

Citing this repository

If you find this code useful in your research, please consider citing us:

@article{LSHFM,
  title={Distilling knowledge by mimicking features},
  author={Wang, Guo-Hua and Ge, Yifan and Wu, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
}

Acknowledgement

This project is based on https://github.com/pytorch/vision/tree/master/references/detection. This project aims at object detection, so I remove the code about segmentation and keypoint detection.

Owner
Guo-Hua Wang
Guo-Hua Wang
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022