A machine learning malware analysis framework for Android apps.

Overview

🕵️ A machine learning malware analysis framework for Android apps. ☢️


DroidDetective is a Python tool for analysing Android applications (APKs) for potential malware related behaviour and configurations. When provided with a path to an application (APK file) Droid Detective will make a prediction (using it's ML model) of if the application is malicious. Features and qualities of Droid Detective include:

  • Analysing which of ~330 permissions are specified in the application's AndroidManifest.xml file. 🙅
  • Analysing the number of standard and proprietary permissions in use in the application's AndroidManifest.xml file. 🧮
  • Using a RandomForest machine learning classifier, trained off the above data, from ~14 malware families and ~100 Google Play Store applications. 💻

🤖 Getting Started

Installation

All DroidDetective dependencies can be installed manually or via the requirements file, with

pip install -r REQUIREMENTS.txt

DroidDetective has been tested on both Windows 10 and Ubuntu 18.0 LTS.

Usage

DroidDetective can be run by providing the Python file with an APK as a command line parameter, such as:

python DroidDetective.py myAndroidApp.apk

If an apk_malware.model file is not present, then the tooling will first train the model and will require a training set of APKs in both a folder at the root of the project called malware and another called normal. Once run successfully a result will be printed onto the CLI on if the model has identified the APK to be malicious or benign. An example of this output can be seen below:

>> Analysed file 'com.android.camera2.apk', identified as not malware.

An additional parameter can be provided to DroidDetective.py as a Json file to save the results to. If this Json file already exists the results of this run will be appended to the Json file.

python DroidDetective.py myAndroidApp.apk output.json

An example of this output Json is as follows:

{
    "com.android.camera2": false,
}

⚗️ Data Science | The ML Model

DroidDetective is a Python tool for analyzing Android applications (APKs) for potential malware related behaviour. This works by training a Random Forest classifier on information derived from both known malware APKs and standard APKs available on the Android app store. This tooling comes pre-trained, however, the model can be re-trained on a new dataset at any time. ⚙️

This model currently uses permissions from an APKs AndroidManifest.xml file as a feature set. This works by creating a dictionary of each standard Android permission and setting the feature to 1 if the permission is present in the APK. Similarly, a feature is added for the amount of permissions in use in the manifest and for the amount of unidentified permissions found in the manifest.

The pre-trained model was trained off approximately 14 malware families (each with one or more APK files), located from ashisdb's repository, and approximately 100 normal applications located from the Google Play Store.

The below denotes the statistics for this ML model:

Accuracy: 0.9310344827586207
Recall: 0.9166666666666666
Precision: 0.9166666666666666
F-Measure: 0.9166666666666666

The top 10 highest weighted features (i.e. Android permissions) used by this model, for identifying malware, can be seen below:

"android.permission.SYSTEM_ALERT_WINDOW": 0.019091367939223395,
"android.permission.ACCESS_NETWORK_STATE": 0.021001765263234648,
"android.permission.ACCESS_WIFI_STATE": 0.02198962579120518,
"android.permission.RECEIVE_BOOT_COMPLETED": 0.026398914436102188,
"android.permission.GET_TASKS": 0.03595458598076517,
"android.permission.WAKE_LOCK": 0.03908212881520419,
"android.permission.WRITE_SMS": 0.057041576632290585,
"android.permission.INTERNET": 0.08816028225034145,
"android.permission.WRITE_EXTERNAL_STORAGE": 0.09835914154294739,
"other_permission": 0.10189463965313218,
"num_of_permissions": 0.12392224814084198

📜 License

GNU General Public License v3.0

Owner
James Stevenson
I’m a Software Engineer and Security Researcher, with a background of over five years in the computer security industry.
James Stevenson
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022