An OpenAI Gym environment for Super Mario Bros

Overview

gym-super-mario-bros

BuildStatus PackageVersion PythonVersion Stable Format License

Mario

An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) using the nes-py emulator.

Installation

The preferred installation of gym-super-mario-bros is from pip:

pip install gym-super-mario-bros

Usage

Python

You must import gym_super_mario_bros before trying to make an environment. This is because gym environments are registered at runtime. By default, gym_super_mario_bros environments use the full NES action space of 256 discrete actions. To contstrain this, gym_super_mario_bros.actions provides three actions lists (RIGHT_ONLY, SIMPLE_MOVEMENT, and COMPLEX_MOVEMENT) for the nes_py.wrappers.JoypadSpace wrapper. See gym_super_mario_bros/actions.py for a breakdown of the legal actions in each of these three lists.

from nes_py.wrappers import JoypadSpace
import gym_super_mario_bros
from gym_super_mario_bros.actions import SIMPLE_MOVEMENT
env = gym_super_mario_bros.make('SuperMarioBros-v0')
env = JoypadSpace(env, SIMPLE_MOVEMENT)

done = True
for step in range(5000):
    if done:
        state = env.reset()
    state, reward, done, info = env.step(env.action_space.sample())
    env.render()

env.close()

NOTE: gym_super_mario_bros.make is just an alias to gym.make for convenience.

NOTE: remove calls to render in training code for a nontrivial speedup.

Command Line

gym_super_mario_bros features a command line interface for playing environments using either the keyboard, or uniform random movement.

gym_super_mario_bros -e <the environment ID to play> -m <`human` or `random`>

NOTE: by default, -e is set to SuperMarioBros-v0 and -m is set to human.

Environments

These environments allow 3 attempts (lives) to make it through the 32 stages in the game. The environments only send reward-able game-play frames to agents; No cut-scenes, loading screens, etc. are sent from the NES emulator to an agent nor can an agent perform actions during these instances. If a cut-scene is not able to be skipped by hacking the NES's RAM, the environment will lock the Python process until the emulator is ready for the next action.

Environment Game ROM Screenshot
SuperMarioBros-v0 SMB standard
SuperMarioBros-v1 SMB downsample
SuperMarioBros-v2 SMB pixel
SuperMarioBros-v3 SMB rectangle
SuperMarioBros2-v0 SMB2 standard
SuperMarioBros2-v1 SMB2 downsample

Individual Stages

These environments allow a single attempt (life) to make it through a single stage of the game.

Use the template

SuperMarioBros-<world>-<stage>-v<version>

where:

  • <world> is a number in {1, 2, 3, 4, 5, 6, 7, 8} indicating the world
  • <stage> is a number in {1, 2, 3, 4} indicating the stage within a world
  • <version> is a number in {0, 1, 2, 3} specifying the ROM mode to use
    • 0: standard ROM
    • 1: downsampled ROM
    • 2: pixel ROM
    • 3: rectangle ROM

For example, to play 4-2 on the downsampled ROM, you would use the environment id SuperMarioBros-4-2-v1.

Random Stage Selection

The random stage selection environment randomly selects a stage and allows a single attempt to clear it. Upon a death and subsequent call to reset, the environment randomly selects a new stage. This is only available for the standard Super Mario Bros. game, not Lost Levels (at the moment). To use these environments, append RandomStages to the SuperMarioBros id. For example, to use the standard ROM with random stage selection use SuperMarioBrosRandomStages-v0. To seed the random stage selection use the seed method of the env, i.e., env.seed(1), before any calls to reset.

Step

Info about the rewards and info returned by the step method.

Reward Function

The reward function assumes the objective of the game is to move as far right as possible (increase the agent's x value), as fast as possible, without dying. To model this game, three separate variables compose the reward:

  1. v: the difference in agent x values between states
    • in this case this is instantaneous velocity for the given step
    • v = x1 - x0
      • x0 is the x position before the step
      • x1 is the x position after the step
    • moving right ⇔ v > 0
    • moving left ⇔ v < 0
    • not moving ⇔ v = 0
  2. c: the difference in the game clock between frames
    • the penalty prevents the agent from standing still
    • c = c0 - c1
      • c0 is the clock reading before the step
      • c1 is the clock reading after the step
    • no clock tick ⇔ c = 0
    • clock tick ⇔ c < 0
  3. d: a death penalty that penalizes the agent for dying in a state
    • this penalty encourages the agent to avoid death
    • alive ⇔ d = 0
    • dead ⇔ d = -15

r = v + c + d

The reward is clipped into the range (-15, 15).

info dictionary

The info dictionary returned by the step method contains the following keys:

Key Type Description
coins int The number of collected coins
flag_get bool True if Mario reached a flag or ax
life int The number of lives left, i.e., {3, 2, 1}
score int The cumulative in-game score
stage int The current stage, i.e., {1, ..., 4}
status str Mario's status, i.e., {'small', 'tall', 'fireball'}
time int The time left on the clock
world int The current world, i.e., {1, ..., 8}
x_pos int Mario's x position in the stage (from the left)
y_pos int Mario's y position in the stage (from the bottom)

Citation

Please cite gym-super-mario-bros if you use it in your research.

@misc{gym-super-mario-bros,
  author = {Christian Kauten},
  howpublished = {GitHub},
  title = {{S}uper {M}ario {B}ros for {O}pen{AI} {G}ym},
  URL = {https://github.com/Kautenja/gym-super-mario-bros},
  year = {2018},
}
Owner
Andrew Stelmach
Andrew Stelmach
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022