Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

Related tags

Deep LearningMC-GAN
Overview

MC-GAN in PyTorch

This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you use this code or our collected font dataset for your research, please cite:

Multi-Content GAN for Few-Shot Font Style Transfer; Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, Trevor Darrell, in arXiv, 2017.

Prerequisites:

  • Linux or macOS
  • Python 2.7
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
pip install scikit-image
  • Clone this repo:
mkdir FontTransfer
cd FontTransfer
git clone https://github.com/azadis/MC-GAN
cd MC-GAN

MC-GAN train/test

  • Download our gray-scale 10K font data set:

./datasets/download_font_dataset.sh Capitals64

../datasets/Capitals64/test_dict/dict.pkl makes observed random glyphs be similar at different test runs on Capitals64 dataset. It is a dictionary with font names as keys and random arrays containing indices from 0 to 26 as their values. Lengths of the arrays are equal to the number of non-observed glyphs in each font.

../datasets/Capitals64/BASE/Code New Roman.0.0.png is a fixed simple font used for training the conditional GAN in the End-to-End model.

./datasets/download_font_dataset.sh public_web_fonts

Given a few letters of font ${DATA} for examples 5 letters {T,O,W,E,R}, training directory ${DATA}/A should contain 5 images each with dimension 64x(64x26)x3 where 5 - 1 = 4 letters are given and the rest are zeroed out. Each image should be saved as ${DATA}_${IND}.png where ${IND} is the index (in [0,26) ) of the letter omitted from the observed set. Training directory ${DATA}/B contains images each with dimension 64x64x3 where only the omitted letter is given. Image names are similar to the ones in ${DATA}/A though. ${DATA}/A/test/${DATA}.png contains all 5 given letters as a 64x(64x26)x3-dimensional image. Structure of the directories for above real-world fonts (including only a few observed letters) is as follows. One can refer to the examples in ../datasets/public_web_fonts for more information.

../datasets/public_web_fonts
                      └── ${DATA}/
                          ├── A/
                          │  ├──train/${DATA}_${IND}.png
                          │  └──test/${DATA}.png
                          └── B/
                             ├──train/${DATA}_${IND}.png
                             └──test/${DATA}.png
  • (Optional) Download our synthetic color gradient font data set:

./datasets/download_font_dataset.sh Capitals_colorGrad64
  • Train Glyph Network:
./scripts/train_cGAN.sh Capitals64

Model parameters will be saved under ./checkpoints/GlyphNet_pretrain.

  • Test Glyph Network after specific numbers of epochs (e.g. 400 by setting EPOCH=400 in ./scripts/test_cGAN.sh):
./scripts/test_cGAN.sh Capitals64
  • (Optional) View the generated images (e.g. after 400 epochs):
cd ./results/GlyphNet_pretrain/test_400/

If you are running the code in your local machine, open index.html. If you are running remotely via ssh, on your remote machine run:

python -m SimpleHTTPServer 8881

Then on your local machine, start an SSH tunnel: ssh -N -f -L localhost:8881:localhost:8881 [email protected]_host Now open your browser on the local machine and type in the address bar:

localhost:8881
  • (Optional) Plot loss functions values during training, from MC-GAN directory:
python util/plot_loss.py --logRoot ./checkpoints/GlyphNet_pretrain/
  • Train End-to-End network (e.g. on DATA=ft37_1): You can train Glyph Network following instructions above or download our pre-trained model by running:
./pretrained_models/download_cGAN_models.sh

Now, you can train the full model:

./scripts/train_StackGAN.sh ${DATA}
  • Test End-to-End network:
./scripts/test_StackGAN.sh ${DATA}

results will be saved under ./results/${DATA}_MCGAN_train.

  • (Optional) Make a video from your results in different training epochs:

First, train your model and save model weights in every epoch by setting opt.save_epoch_freq=1 in scripts/train_StackGAN.sh. Then test in different epochs and make the video by:

./scripts/make_video.sh ${DATA}

Follow the previous steps to visualize generated images and training curves where you replace GlyphNet_train with ${DATA}_StackGAN_train.

Training/test Details

  • Flags: see options/train_options.py, options/base_options.py and options/test_options.py for explanations on each flag.

  • Baselines: if you want to use this code to get results of Image Translation baseline or want to try tiling glyphs rather than stacking, refer to the end of scripts/train_cGAN.sh . If you only want to train OrnaNet on top of clean glyphs, refer to the end of scripts/train_StackGAN.sh.

  • Image Dimension: We have tried this network only on 64x64 images of letters. We do not scale and crop images since we set both opt.FineSize and opt.LoadSize to 64.

Citation

If you use this code or the provided dataset for your research, please cite our paper:

@inproceedings{azadi2018multi,
  title={Multi-content gan for few-shot font style transfer},
  author={Azadi, Samaneh and Fisher, Matthew and Kim, Vladimir and Wang, Zhaowen and Shechtman, Eli and Darrell, Trevor},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  volume={11},
  pages={13},
  year={2018}
}

Acknowledgements

We thank Elena Sizikova for downloading all fonts used in the 10K font data set.

Code is inspired by pytorch-CycleGAN-and-pix2pix.

Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022