Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

Related tags

Deep Learningsimmc2
Overview

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021

Welcome to the Second Situated Interactive Multimodal Conversations (SIMMC 2.0) Track for DSTC10 2021.

The SIMMC challenge aims to lay the foundations for the real-world assistant agents that can handle multimodal inputs, and perform multimodal actions. Similar to the First SIMMC challenge (as part of DSTC9), we focus on the task-oriented dialogs that encompass a situated multimodal user context in the form of a co-observed & immersive virtual reality (VR) environment. The conversational context is dynamically updated on each turn based on the user actions (e.g. via verbal interactions, navigation within the scene). For this challenge, we release a new Immersive SIMMC 2.0 dataset in the shopping domains: furniture and fashion.

Organizers: Seungwhan Moon, Satwik Kottur, Paul A. Crook, Ahmad Beirami, Babak Damavandi, Alborz Geramifard

Example from SIMMC

Example from SIMMC-Furniture Dataset

Latest News

  • [June 14, 2021] Challenge announcement. Training / development datasets (SIMMC v2.0) are released.

Important Links

Timeline

Date Milestone
June 14, 2021 Training & development data released
Sept 24, 2021 Test-Std data released, End of Challenge Phase 1
Oct 1, 2021 Entry submission deadline, End of Challenge Phase 2
Oct 8, 2021 Final results announced

Track Description

Tasks and Metrics

We present four sub-tasks primarily aimed at replicating human-assistant actions in order to enable rich and interactive shopping scenarios.

Sub-Task #1 Multimodal Disambiguation
Goal To classify if the assistant should disambiguate in the next turn
Input Current user utterance, Dialog context, Multimodal context
Output Binary label
Metrics Binary classification accuracy
Sub-Task #2 Multimodal Coreference Resolution
Goal To resolve referent objects to thier canonical ID(s) as defined by the catalog.
Input Current user utterance with objection mentions, Dialog context, Multimodal context
Output Canonical object IDs
Metrics Coref F1 / Precision / Recall
Sub-Task #3 Multimodal Dialog State Tracking (MM-DST)
Goal To track user belief states across multiple turns
Input Current user utterance, Dialogue context, Multimodal context
Output Belief state for current user utterance
Metrics Slot F1, Intent F1
Sub-Task #4 Multimodal Dialog Response Generation & Retrieval
Goal To generate Assistant responses or retrieve from a candidate pool
Input Current user utterance, Dialog context, Multimodal context, (Ground-truth API Calls)
Output Assistant response utterance
Metrics Generation: BLEU-4, Retrieval: MRR, [email protected], [email protected], [email protected], Mean Rank

Please check the task input file for a full description of inputs for each subtask.

Evaluation

For the DSTC10 SIMMC Track, we will do a two phase evaluation as follows.

Challenge Period 1: Participants will evaluate the model performance on the provided devtest set. At the end of Challenge Period 1 (Sept 24), we ask participants to submit their model prediction results and a link to their code repository.

Challenge Period 2: A test-std set will be released on Sept 28 for the participants who submitted the results for the Challenge Period 1. We ask participants to submit their model predictions on the test-std set by Oct 1. We will announce the final results and the winners on Oct 8.

Challenge Instructions

(1) Challenge Registration

  • Fill out this form to register at DSTC10. Check “Track 3: SIMMC 2.0: Situated Interactive Multimodal Conversational AI” along with other tracks you are participating in.

(2) Download Datasets and Code

  • Irrespective of participation in the challenge, we'd like to encourge those interested in this dataset to complete this optional survey. This will also help us communicate any future updates on the codebase, the datasets, and the challenge track.

  • Git clone our repository to download the datasets and the code. You may use the provided baselines as a starting point to develop your models.

$ git lfs install
$ git clone https://github.com/facebookresearch/simmc2.git

(3) Reporting Results for Challenge Phase 1

  • Submit your model prediction results on the devtest set, following the submission instructions.
  • We will release the test-std set (with ground-truth labels hidden) on Sept 24.

(4) Reporting Results for Challenge Phase 2

  • Submit your model prediction results on the test-std set, following the submission instructions.
  • We will evaluate the participants’ model predictions using the same evaluation script for Phase 1, and announce the results.

Contact

Questions related to SIMMC Track, Data, and Baselines

Please contact [email protected], or leave comments in the Github repository.

DSTC Mailing List

If you want to get the latest updates about DSTC10, join the DSTC mailing list.

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles:

@article{kottur2021simmc,
  title={SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations},
  author={Kottur, Satwik and Moon, Seungwhan and Geramifard, Alborz and Damavandi, Babak},
  journal={arXiv preprint arXiv:2104.08667},
  year={2021}
}

NOTE: The paper above describes in detail the datasets, the collection process, and some of the baselines we provide in this challenge. The paper reports the results from an earlier version of the dataset and with different train-dev-test splits, hence the baseline performances on the challenge resources will be slightly different.

License

SIMMC 2.0 is released under CC-BY-NC-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022