Distributed Arcface Training in Pytorch

Related tags

Deep LearningMaske_FR
Overview

Distributed Arcface Training in Pytorch

This is a deep learning library that makes face recognition efficient, and effective, which can train tens of millions identity on a single server.

Requirements

How to Training

To train a model, run train.py with the path to the configs:

1. Single node, 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50

2. Multiple nodes, each node 8 GPUs:

Node 0:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

Node 1:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50

3.Training resnet2060 with 8 GPUs:

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r2060.py

Model Zoo

  • The models are available for non-commercial research purposes only.
  • All models can be found in here.
  • Baidu Yun Pan: e8pw
  • onedrive

Performance on ICCV2021-MFR

ICCV2021-MFR testset consists of non-celebrities so we can ensure that it has very few overlap with public available face recognition training set, such as MS1M and CASIA as they mostly collected from online celebrities. As the result, we can evaluate the FAIR performance for different algorithms.

For ICCV2021-MFR-ALL set, TAR is measured on all-to-all 1:1 protocal, with FAR less than 0.000001(e-6). The globalised multi-racial testset contains 242,143 identities and 1,624,305 images.

For ICCV2021-MFR-MASK set, TAR is measured on mask-to-nonmask 1:1 protocal, with FAR less than 0.0001(e-4). Mask testset contains 6,964 identities, 6,964 masked images and 13,928 non-masked images. There are totally 13,928 positive pairs and 96,983,824 negative pairs.

Datasets backbone Training throughout Size / MB ICCV2021-MFR-MASK ICCV2021-MFR-ALL
MS1MV3 r18 - 91 47.85 68.33
Glint360k r18 8536 91 53.32 72.07
MS1MV3 r34 - 130 58.72 77.36
Glint360k r34 6344 130 65.10 83.02
MS1MV3 r50 5500 166 63.85 80.53
Glint360k r50 5136 166 70.23 87.08
MS1MV3 r100 - 248 69.09 84.31
Glint360k r100 3332 248 75.57 90.66
MS1MV3 mobilefacenet 12185 7.8 41.52 65.26
Glint360k mobilefacenet 11197 7.8 44.52 66.48

Performance on IJB-C and Verification Datasets

Datasets backbone IJBC(1e-05) IJBC(1e-04) agedb30 cfp_fp lfw log
MS1MV3 r18 92.07 94.66 97.77 97.73 99.77 log
MS1MV3 r34 94.10 95.90 98.10 98.67 99.80 log
MS1MV3 r50 94.79 96.46 98.35 98.96 99.83 log
MS1MV3 r100 95.31 96.81 98.48 99.06 99.85 log
MS1MV3 r2060 95.34 97.11 98.67 99.24 99.87 log
Glint360k r18-0.1 93.16 95.33 97.72 97.73 99.77 log
Glint360k r34-0.1 95.16 96.56 98.33 98.78 99.82 log
Glint360k r50-0.1 95.61 96.97 98.38 99.20 99.83 log
Glint360k r100-0.1 95.88 97.32 98.48 99.29 99.82 log

Speed Benchmark

Arcface Torch can train large-scale face recognition training set efficiently and quickly. When the number of classes in training sets is greater than 300K and the training is sufficient, partial fc sampling strategy will get same accuracy with several times faster training performance and smaller GPU memory. Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a sparse softmax, where each batch dynamicly sample a subset of class centers for training. In each iteration, only a sparse part of the parameters will be updated, which can reduce a lot of GPU memory and calculations. With Partial FC, we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed training and mixed precision training.

Image text

More details see speed_benchmark.md in docs.

1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)

- means training failed because of gpu memory limitations.

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 4681 4824 5004
1400000 1672 3043 4738
5500000 - 1389 3975
8000000 - - 3565
16000000 - - 2679
29000000 - - 1855

2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)

Number of Identities in Dataset Data Parallel Model Parallel Partial FC 0.1
125000 7358 5306 4868
1400000 32252 11178 6056
5500000 - 32188 9854
8000000 - - 12310
16000000 - - 19950
29000000 - - 32324

Evaluation ICCV2021-MFR and IJB-C

More details see eval.md in docs.

Test

We tested many versions of PyTorch. Please create an issue if you are having trouble.

  • torch 1.6.0
  • torch 1.7.1
  • torch 1.8.0
  • torch 1.9.0

Citation

@inproceedings{deng2019arcface,
  title={Arcface: Additive angular margin loss for deep face recognition},
  author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4690--4699},
  year={2019}
}
@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022