Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Overview

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

YOLOv5 with alpha-IoU losses implemented in PyTorch.

Example results on the test set of PASCAL VOC 2007 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1 and 2), thus can detect more true positive objects (image 3 to 5) and fewer false positive objects (image 6 and 7).

Example results on the val set of MS COCO 2017 using YOLOv5s trained by the vanilla IoU loss (top row) and the alpha-IoU loss with alpha=3 (bottom row). The alpha-IoU loss performs better than the vanilla IoU loss because it can localize objects more accurately (image 1), thus can detect more true positive objects (image 2 to 5) and fewer false positive objects (image 4 to 7). Note that image 4 and 5 detect both more true positive and fewer false positive objects.

Citation

If you use our method, please consider citing:

@inproceedings{Jiabo_Alpha-IoU,
  author    = {He, Jiabo and Erfani, Sarah and Ma, Xingjun and Bailey, James and Chi, Ying and Hua, Xian-Sheng},
  title     = {Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression},
  booktitle = {NeurIPS},
  year      = {2021},
}

Modifications

This repository is a fork of ultralytics/yolov5, with an implementation of alpha-IoU losses while keeping the code as close to the original as possible.

Alpha-IoU Losses

Alpha-IoU losses can be configured in Line 131 of utils/loss.py, functionesd as 'bbox_alpha_iou'. The alpha values and types of losses (e.g., IoU, GIoU, DIoU, CIoU) can be selected in this function, which are defined in utils/general.py. Note that we should use a small constant epsilon to avoid torch.pow(0, alpha) or denominator=0.

Install

Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:

$ git clone https://github.com/Jacobi93/Alpha-IoU
$ cd Alpha-IoU
$ pip install -r requirements.txt

Configurations

Configuration files can be found in data. We do not change either 'voc.yaml' or 'coco.yaml' used in the original repository. However, we could do more experiments. E.g.,

voc25.yaml # randomly use 25% PASCAL VOC as the training set
voc50.yaml # randomly use 50% PASCAL VOC as the training set

Code for generating different small training sets is in generate_small_sets.py. Code for generating different noisy labels is in generate_noisy_labels.py, and we should change the 'img2label_paths' function in utils/datasets.py accordingly.

Implementation Commands

For detailed installation instruction and network training options, please take a look at the README file or issue of ultralytics/yolov5. Following are sample commands we used for training and testing YOLOv5 with alpha-IoU, with more samples in instruction.txt.

python train.py --data voc.yaml --hyp hyp.scratch.yaml --cfg yolov5s.yaml --batch-size 64 --epochs 300 --device '0'
python test.py --data voc.yaml --img 640 --conf 0.001 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --device '0'
python detect.py --source ../VOC/images/detect500 --weights 'runs/train/voc_yolov5s_iou/weights/best.pt' --conf 0.25

We can also randomly generate some images for detection and visualization results in generate_detect_images.py.

Pretrained Weights

Here are some pretrained models using the configurations in this repository, with alpha=3 in all experiments. Details of these pretrained models can be found in runs/train. All results are tested using 'weights/best.pt' for each experiment. It is a very simple yet effective method so that people is able to quickly apply our method to existing models following the 'bbox_alpha_iou' function in utils/general.py. Note that YOLOv5 has been updated for many versions and all pretrained models in this repository are obtained based on the YOLOv5 version 4.0, where details of all versions for YOLOv5 can be found. Researchers are also welcome to apply our method to other object detection models, e.g., Faster R-CNN, DETR, etc.

Owner
Jacobi(Jiabo He)
Jacobi(Jiabo He)
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022