Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

Overview

LOREN

Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

front

DEMO System

Check out our demo system! Note that the results will be slightly different from the paper, since we use an up-to-date Wikipedia as the evidence source whereas FEVER uses Wikipedia dated 2017.

Dependencies

  • CUDA > 11
  • Prepare requirements: pip3 install -r requirements.txt.
    • Also works for allennlp==2.3.0, transformers==4.5.1, torch==1.8.1.
  • Set environment variable $PJ_HOME: export PJ_HOME=/YOUR_PATH/LOREN/.

Download Pre-processed Data and Checkpoints

  • Pre-processed data at Google Drive. Unzip it and put them under LOREN/data/.

    • Data for training a Seq2Seq MRC is at data/mrc_seq2seq_v5/.
    • Data for training veracity prediction is at data/fact_checking/v5/*.json.
      • Note: dev.json uses ground truth evidence for validation, where eval.json uses predicted evidence for validation. This is consistent with the settings in KGAT.
    • Evidence retrieval models are not required for training LOREN, since we directly adopt the retrieved evidence from KGAT, which is at data/fever/baked_data/ (using only during pre-processing).
    • Original data is at data/fever/ (using only during pre-processing).
  • Pre-trained checkpoints at Huggingface Models. Unzip it and put them under LOREN/models/.

    • Checkpoints for veracity prediciton are at models/fact_checking/.
    • Checkpoint for generative MRC is at models/mrc_seq2seq/.
    • Checkpoints for KGAT evidence retrieval models are at models/evidence_retrieval/ (not used in training, displayed only for the sake of completeness).

Training LOREN from Scratch

For quick training and inference with pre-processed data & pre-trained models, please go to Veracity Prediction.

First, go to LOREN/src/.

1 Building Local Premises from Scratch

1) Extract claim phrases and generate questions

You'll need to download three external models in this step, i.e., two models from AllenNLP in parsing_client/sentence_parser.py and a T5-based question generation model in qg_client/question_generator.py. Don't worry, they'll be automatically downloaded.

  • Run python3 pproc_client/pproc_questions.py --roles eval train val test
  • This generates cached json files:
    • AG_PREFIX/answer.{role}.cache: extracted phrases are stored in the field answers.
    • QG_PREFIX/question.{role}.cache: generated questions are stored in the field cloze_qs, generate_qs and questions (two types of questions concatenated).

2) Train Seq2Seq MRC

Prepare self-supervised MRC data (only for SUPPORTED claims)
  • Run python3 pproc_client/pproc_mrc.py -o LOREN/data/mrc_seq2seq_v5.
  • This generates files for Seq2Seq training in a HuggingFace style:
    • data/mrc_seq2seq_v5/{role}.source: concatenated question and evidence text.
    • data/mrc_seq2seq_v5/{role}.target: answer (claim phrase).
Training Seq2Seq
  • Go to mrc_client/seq2seq/, which is modified based on HuggingFace's examples.
  • Follow script/train.sh.
  • The best checkpoint will be saved in $output_dir (e.g., models/mrc_seq2seq/).
    • Best checkpoints are decided by ROUGE score on dev set.

3) Run MRC for all questions and assemble local premises

  • Run python3 pproc_client/pproc_evidential.py --roles val train eval test -m PATH_TO_MRC_MODEL/.
  • This generates files:
    • {role}.json: files for veracity prediction. Assembled local premises are stored in the field evidential_assembled.

4) Building NLI prior

Before training veracity prediction, we'll need a NLI prior from pre-trained NLI models, such as DeBERTa.

  • Run python3 pproc_client/pproc_nli_labels.py -i PATH_TO/{role}.json -m microsoft/deberta-large-mnli.
  • Mind the order! The predicted classes [Contradict, Neutral, Entailment] correspond to [REF, NEI, SUP], respectively.
  • This generates files:
    • Adding a new field nli_labels to {role}.json.

2 Veracity Prediction

This part is rather easy (less pipelined :P). A good place to start if you want to skip the above pre-processing.

1) Training

  • Go to folder check_client/.
  • See what scripts/train_*.sh does.

2) Testing

  • Stay in folder check_client/
  • Run python3 fact_checker.py --params PARAMS_IN_THE_CODE
  • This generates files:
    • results/*.predictions.jsonl

3) Evaluation

  • Go to folder eval_client/

  • For Label Accuracy and FEVER score: fever_scorer.py

  • For CulpA (turn on --verbose in testing): culpa.py

Citation

If you find our paper or resources useful to your research, please kindly cite our paper (pre-print, official published paper coming soon).

@misc{chen2021loren,
      title={LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification}, 
      author={Jiangjie Chen and Qiaoben Bao and Changzhi Sun and Xinbo Zhang and Jiaze Chen and Hao Zhou and Yanghua Xiao and Lei Li},
      year={2021},
      eprint={2012.13577},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Jiangjie Chen
Ph.D. student.
Jiangjie Chen
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022