A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Overview

Telemanom (v2.0)

v2.0 updates:

  • Vectorized operations via numpy
  • Object-oriented restructure, improved organization
  • Merge branches into single branch for both processing modes (with/without labels)
  • Update requirements.txt and Dockerfile
  • Updated result output for both modes
  • PEP8 cleanup

Anomaly Detection in Time Series Data Using LSTMs and Automatic Thresholding

License

Telemanom employs vanilla LSTMs using Keras/Tensorflow to identify anomalies in multivariate sensor data. LSTMs are trained to learn normal system behaviors using encoded command information and prior telemetry values. Predictions are generated at each time step and the errors in predictions represent deviations from expected behavior. Telemanom then uses a novel nonparametric, unsupervised approach for thresholding these errors and identifying anomalous sequences of errors.

This repo along with the linked data can be used to re-create the experiments in our 2018 KDD paper, "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding", which describes the background, methodologies, and experiments in more detail. While the system was originally deployed to monitor spacecraft telemetry, it can be easily adapted to similar problems.

Getting Started

Clone the repo (only available from source currently):

git clone https://github.com/khundman/telemanom.git && cd telemanom

Configure system/modeling parameters in config.yaml file (to recreate experiment from paper, leave as is). For example:

  • train: True if True, a new model will be trained for each input stream. If False (default) existing trained model will be loaded and used to generate predictions
  • predict: True Generate new predictions using models. If False (default), use existing saved predictions in evaluation (useful for tuning error thresholding and skipping prior processing steps)
  • l_s: 250 Determines the number of previous timesteps input to the model at each timestep t (used to generate predictions)

To run via Docker:

docker build -t telemanom .

# rerun experiment detailed in paper or run with your own set of labeled anomlies in 'labeled_anomalies.csv'
docker run telemanom -l labeled_anomalies.csv

# run without labeled anomalies
docker run telemanom

To run with local or virtual environment

From root of repo, curl and unzip data:

curl -O https://s3-us-west-2.amazonaws.com/telemanom/data.zip && unzip data.zip && rm data.zip

Install dependencies using python 3.6+ (recommend using a virtualenv):

pip install -r requirements.txt

Begin processing (from root of repo):

# rerun experiment detailed in paper or run with your own set of labeled anomlies
python example.py -l labeled_anomalies.csv

# run without labeled anomalies
python example.py

A jupyter notebook for evaluating results for a run is at telemanom/result_viewer.ipynb. To launch notebook:

jupyter notebook telemanom/result-viewer.ipynb

Plotly is used to generate interactive inline plots, e.g.:

drawing2

Data

Using your own data

Pre-split training and test sets must be placed in directories named data/train/ and data/test. One .npy file should be generated for each channel or stream (for both train and test) with shape (n_timesteps, n_inputs). The filename should be a unique channel name or ID. The telemetry values being predicted in the test data must be the first feature in the input.

For example, a channel T-1 should have train/test sets named T-1.npy with shapes akin to (4900,61) and (3925, 61), where the number of input dimensions are matching (61). The actual telemetry values should be along the first dimension (4900,1) and (3925,1).

Raw experiment data

The raw data available for download represents real spacecraft telemetry data and anomalies from the Soil Moisture Active Passive satellite (SMAP) and the Curiosity Rover on Mars (MSL). All data has been anonymized with regard to time and all telemetry values are pre-scaled between (-1,1) according to the min/max in the test set. Channel IDs are also anonymized, but the first letter gives indicates the type of channel (P = power, R = radiation, etc.). Model input data also includes one-hot encoded information about commands that were sent or received by specific spacecraft modules in a given time window. No identifying information related to the timing or nature of commands is included in the data. For example:

drawing

This data also includes pre-split test and training data, pre-trained models, predictions, and smoothed errors generated using the default settings in config.yaml. When getting familiar with the repo, running the result-viewer.ipynb notebook to visualize results is useful for developing intuition. The included data also is useful for isolating portions of the system. For example, if you wish to see the effects of changes to the thresholding parameters without having to train new models, you can set Train and Predict to False in config.yaml to use previously generated predictions from prior models.

Anomaly labels and metadata

The anomaly labels and metadata are available in labeled_anomalies.csv, which includes:

  • channel id: anonymized channel id - first letter represents nature of channel (P = power, R = radiation, etc.)
  • spacecraft: spacecraft that generated telemetry stream
  • anomaly_sequences: start and end indices of true anomalies in stream
  • class: the class of anomaly (see paper for discussion)
  • num values: number of telemetry values in each stream

To provide your own labels, use the labeled_anomalies.csv file as a template. The only required fields/columns are channel_id and anomaly_sequences. anomaly_sequences is a list of lists that contain start and end indices of anomalous regions in the test dataset for a channel.

Dataset and performance statistics:

Data

SMAP MSL Total
Total anomaly sequences 69 36 105
Point anomalies (% tot.) 43 (62%) 19 (53%) 62 (59%)
Contextual anomalies (% tot.) 26 (38%) 17 (47%) 43 (41%)
Unique telemetry channels 55 27 82
Unique ISAs 28 19 47
Telemetry values evaluated 429,735 66,709 496,444

Performance (with default params specified in paper)

Spacecraft Precision Recall F_0.5 Score
SMAP 85.5% 85.5% 0.71
Curiosity (MSL) 92.6% 69.4% 0.69
Total 87.5% 80.0% 0.71

Processing

Each time the system is started a unique datetime ID (ex. 2018-05-17_16.28.00) will be used to create the following

  • a results file (in results/) that extends labeled_anomalies.csv to include identified anomalous sequences and related info
  • a data subdirectory containing data files for created models, predictions, and smoothed errors for each channel. A file called params.log is also created that contains parameter settings and logging output during processing.

As mentioned, the jupyter notebook telemanom/result-viewer.ipynb can be used to visualize results for each stream.

Citation

If you use this work, please cite:

  title={Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding},
  author={Hundman, Kyle and Constantinou, Valentino and Laporte, Christopher and Colwell, Ian and Soderstrom, Tom},
  journal={arXiv preprint arXiv:1802.04431},
  year={2018}
}

License

Telemanom is distributed under Apache 2.0 license.

Contact: Kyle Hundman ([email protected])

Contributors

A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022