Deep Reinforcement Learning for Multiplayer Online Battle Arena

Related tags

Deep LearningMOBA_RL
Overview

MOBA_RL

Deep Reinforcement Learning for Multiplayer Online Battle Arena

Prerequisite

  1. Python 3
  2. gym-derk
  3. Tensorflow 2.4.1
  4. Dotaservice of TimZaman
  5. Seed RL of Google
  6. Ubuntu 20.04
  7. RTX 3060 GPU, 16GB RAM is used to run Dota2 environment with rendering
  8. RTX 3080 GPU, 46GB RAM is used to training 16 number of headless Dota2 environment together in my case

Derk Environment

We are going to train small MOBA environment called Derk.

First, move to dr-derks-mutant-battlegrounds folder.

Run below command to run the 50 parallel environemnt. I modified Seel_RL of Google for my MOBA case.

$ python learner_1.py --workspace_path [your path]/dr-derks-mutant-battlegrounds/
$ python learner_2.py --workspace_path [your path]/dr-derks-mutant-battlegrounds/
$ python run.py -p1 bot -p2 oldbot -n 50

You can check the training progress using Tensorboard log under tboard path of workspace.

Dota2 Environment

Rendering Environment

You first need to install Dota 2 from Steam. After installation, please check there is Dota2 folder under /home/[your account]/.steam/steam/steamapps/common/dota 2 beta'. We are going to run Dota2 from terminal command.

Next, you need to download and install dotaservice. In my case, I should modity the _run_dota function of dotaservice.py like below.

async def _run_dota(self):
  script_path = os.path.join(self.dota_path, self.DOTA_SCRIPT_FILENAME)
  script_path = '/home/kimbring2/.local/share/Steam/ubuntu12_32/steam-runtime/run.sh'

  # TODO(tzaman): all these options should be put in a proto and parsed with gRPC Config.
  args = [
       script_path,
       '/home/kimbring2/.local/share/Steam/steamapps/common/dota 2 beta/game/dota.sh',
       '-botworldstatesocket_threaded',
       '-botworldstatetosocket_frames', '{}'.format(self.ticks_per_observation),
       '-botworldstatetosocket_radiant', '{}'.format(self.PORT_WORLDSTATES[TEAM_RADIANT]),
       '-botworldstatetosocket_dire', '{}'.format(self.PORT_WORLDSTATES[TEAM_DIRE]),
       '-con_logfile', 'scripts/vscripts/bots/{}'.format(self.CONSOLE_LOG_FILENAME),
       '-con_timestamp',
       '-console',
       '-dev',
       '-insecure',
       '-noip',
       '-nowatchdog',  # WatchDog will quit the game if e.g. the lua api takes a few seconds.
       '+clientport', '27006',  # Relates to steam client.
       '+dota_1v1_skip_strategy', '1',
       '+dota_surrender_on_disconnect', '0',
       '+host_timescale', '{}'.format(self.host_timescale),
       '+hostname dotaservice',
       '+sv_cheats', '1',
       '+sv_hibernate_when_empty', '0',
       '+tv_delay', '0',
       '+tv_enable', '1',
       '+tv_title', '{}'.format(self.game_id),
       '+tv_autorecord', '1',
       '+tv_transmitall', '1',  # TODO(tzaman): what does this do exactly?
  ]

Training Environment

You need to build the Docker image of Dotaservice mentioned in README of Docker of the dotaservice.

You can run the Seel RL for Dota2 using below command.

$ ./run_dotaservice.sh 16
$ ./run_impala.sh 16

Addidinally, you can terminate all process using below command.

$ ./stop.sh
Owner
Dohyeong Kim
Researchers interested in creating agents that behave like humans using Deep Learning
Dohyeong Kim
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022