KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

Overview

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

LICENSE

KuaiRec is a real-world dataset collected from the recommendation logs of the video-sharing mobile app Kuaishou. For now, it is the first dataset that contains a fully observed user-item interaction matrix. For the term "fully observed", we mean there are almost no missing values in the user-item matrix, i.e., each user has viewed each video and then left feedback.

The following figure illustrates the user-item matrices in traditional datasets and KuaiRec.

kuaidata

With all user's preference known, KuaiRec can used in offline evaluation (i.e., offline A/B test) for recommendation models. It can benefit lots of research directions, such as unbiased recommendation, interactive/conversational recommendation, or reinforcement learning (RL) and off-policy evaluation (OPE) for recommendation.

If you use it in your work, please cite our paper: LINK PDF

@article{gao2022kuairec,
  title={KuaiRec: A Fully-observed Dataset for Recommender Systems}, 
  author={Chongming Gao and Shijun Li and Wenqiang Lei and Biao Li and Peng Jiang and Jiawei Chen and Xiangnan He and Jiaxin Mao and Tat-Seng Chua},
  journal={arXiv preprint arXiv:2202.10842},
  year={2022}
}

This repository lists the example codes in evaluating conversational recommendation as described in the paper.

We provide some simple statistics of this dataset here . It is generated by Statistics_KuaiRec.ipynb. You can do it online at Google Colab colab.


News ! ! ! ! !

2022.05.16: We update the dataset to version 2.0. We made the following changes:

  • We removed the unused video ID=1225 from all tables having the field video_id and reindex the rest videos, i.e., ID = ID - 1 if ID > 1225.
  • We added two tables to enhance the side information for users and videos, respectively. See 4.item_daily_feet.csv and 5. user_feat.csv under the data description section for details.

Download the data

We provides several options to download this dataset:

Option 1. Download via the "wget" command.

 wget https://chongming.myds.me:61364/data/KuaiRec.zip --no-check-certificate
 unzip KuaiRec.zip

Option 2. Download manually throughs the following links:

The script loaddata.py provides a simple way to load the data via Pandas in Python.


Data Descriptions

KuaiRec contains millions of user-item interactions as well as the side information include the item categorires and social network. Four files are included in the download data:

KuaiRec
├── data
│   ├── big_matrix.csv          
│   ├── small_matrix.csv
│   ├── social_network.csv
│   └── item_categories.csv

The statistics of the small matrix and big matrix in KuaiRec.

#Users #Items #Interactions Density
small matrix 1,411 3,327 4,676,570 99.6%
big matrix 7,176 10,728 12,530,806 16.3%

Note that the density of small matrix is 99.6% instead of 100% because some users have explicitly indicated that they would not be willing to receive recommendations from certain authors. I.e., They blocked these videos.

1. Descriptions of the fields in big_matrix.csv and small_matrix.csv.

Field Name: Description Type Example
user_id The ID of the user. int64 0
video_id The ID of the viewed video. int64 3650
play_duration Time of video viewing of this interaction (millisecond). int64 13838
video_duration Time of this video (millisecond). int64 10867
time Human-readable date for this interaction str "2020-07-05 00:08:23.438"
date Date of this interaction int64 20200705
timestamp Unix timestamp float64 1593878903.438
watch_ratio The video watching ratio (=play_duration/video_duration) float64 1.273397

The "watch_ratio" can be deemed as the label of the interaction. Note: there is no "like" signal for this dataset. If you need this binary signal in your scenarios, you can create it yourself. E.g., like = 1 if watch_ratio > 2.0.

2. Descriptions of the fields in social_network.csv

Field Name: Description Type Example
user_id The ID of the user. int64 5352
friend_list The list of ID of the friends of this user. list [4202,7126]

3. Descriptions of the fields in item_categories.csv.

Field Name: Description Type Example
video_id The ID of the video. int64 1
feat The list of tags of this video. list [27,9]

4. Descriptions of the fields in item_daily_feet.csv. (Added on 2022.05.16)

Field Name: Description Type Example
video_id The ID of the video. int64 3784
date Date of the statistics of this video. int64 20200730
author_id The ID of the author of this video. int64 441
video_type Type of this video (NORMAL or AD). str "NORMAL"
upload_dt Upload date of this video. str "2020-07-08"
upload_type The upload type of this video. str "ShortImport"
visible_status The visible state of this video on the APP now. str "public"
video_duration The time duration of this duration (in millisecond). float64 17200.0
video_width The width of this video on the server. int64 720
video_height The height of this video on the server. int64 1280
music_id Background music ID of this video. int64 989206467
video_tag_id The ID of tag of this video. int64 2522
video_tag_name The name of tag of this video. string "祝福"
show_cnt The number of shows of this video within this day (the same with all following fields) int64 7716
show_user_num The number of users who received the recommendation of this video. int64 5256
play_cnt The number of plays. int64 7701
play_user_num The number of users who plays this video. int64 5034
play_duration The total time duration of playing this video (in millisecond). int64 138333346
complete_play_cnt The number of complete plays. complete play: finishing playing the whole video, i.e., #(play_duration >= video_duration). int64 3446
complete_play_user_num The number of users who perform the complete play. int64 2033
valid_play_cnt valid play: play_duration >= video_duration if video_duration <= 7s, or play_duration > 7 if video_duration > 7s. int64 5099
valid_play_user_num The number of users who perform the complete play. int64 3195
long_time_play_cnt long time play: play_duration >= video_duration if video_duration <= 18s, or play_duration >=18 if video_duration > 18s. int64 3299
long_time_play_user_num The number of users who perform the long time play. int64 1940
short_time_play_cnt short time play: play_duration < min(3s, video_duration). int64 1538
short_time_play_user_num The number of users who perform the short time play. int64 1190
play_progress The average video playing ratio (=play_duration/video_duration) int64 0.579695
comment_stay_duration Total time of staying in the comments section int64 467865
like_cnt Total likes int64 659
like_user_num The number of users who hit the "like" button. int64 657
click_like_cnt The number of the "like" resulted from double click int64 496
double_click_cnt The number of users who double click the video. int64 163
cancel_like_cnt The number of likes that are cancelled by users. int64 15
cancel_like_user_num The number of users who cancel their like. int64 15
comment_cnt The number of comments within this day. int64 13
comment_user_num The number of users who comment this video. int64 12
direct_comment_cnt The number of direct comments (depth=1). int64 13
reply_comment_cnt The number of reply comments (depth>1). int64 0
delete_comment_cnt The number of deleted comments. int64 0
delete_comment_user_num The number of users who delete their comments. int64 0
comment_like_cnt The number of comment likes. int64 2
comment_like_user_num The number of users who like the comments. int64 2
follow_cnt The number of increased follows from this video. int64 151
follow_user_num The number of users who follow the author of this video due to this video. int64 151
cancel_follow_cnt The number of decreased follows from this video. int64 0
cancel_follow_user_num The number of users who cancel their following of the author of this video due to this video. int64 0
share_cnt The times of sharing this video. int64 1
share_user_num The number of users who share this video. int64 1
download_cnt The times of downloading this video. int64 2
download_user_num The number of users who download this video. int64 2
report_cnt The times of reporting this video. int64 0
report_user_num The number of users who report this video. int64 0
reduce_similar_cnt The times of reducing similar content of this video. int64 2
reduce_similar_user_num The number of users who choose to reduce similar content of this video. int64 2
collect_cnt The times of adding this video to favorite videos. int64 0
collect_user_num The number of users who add this video to their favorite videos. int64 0
cancel_collect_cnt The times of removing this video from favorite videos. int64 0
cancel_collect_user_num The number of users who remove this video from their favorite videos int64 0

5. Descriptions of the fields in user_feat.csv (Added on 2022.05.16)

Field Name: Description Type Example
user_id The ID of the user. int64 0
user_active_degree In the set of {'high_active', 'full_active', 'middle_active', 'UNKNOWN'}. str "high_active"
is_lowactive_period Is this user in its low active period int64 0
is_live_streamer Is this user a live streamer? int64 0
is_video_author Has this user uploaded any video? int64 0
follow_user_num The number of users that this user follows. int64 5
follow_user_num_range The range of the number of users that this user follows. In the set of {'0', '(0,10]', '(10,50]', '(100,150]', '(150,250]', '(250,500]', '(50,100]', '500+'} str "(0,10]"
fans_user_num The number of the fans of this user. int64 0
fans_user_num_range The range of the number of fans of this user. In the set of {'0', '[1,10)', '[10,100)', '[100,1k)', '[1k,5k)', '[5k,1w)', '[1w,10w)'} str "0"
friend_user_num The number of friends that this user has. int64 0
friend_user_num_range The range of the number of friends that this user has. In the set of {'0', '[1,5)', '[5,30)', '[30,60)', '[60,120)', '[120,250)', '250+'} str "0"
register_days The days since this user has registered. int64 107
register_days_range The range of the registered days. In the set of {'15-30', '31-60', '61-90', '91-180', '181-365', '366-730', '730+'}. str "61-90"
onehot_feat0 An encrypted feature of the user. Each value indicate the position of "1" in the one-hot vector. Range: {0,1} int64 0
onehot_feat1 An encrypted feature. Range: {0, 1, ..., 7} int64 1
onehot_feat2 An encrypted feature. Range: {0, 1, ..., 29} int64 17
onehot_feat3 An encrypted feature. Range: {0, 1, ..., 1075} int64 638
onehot_feat4 An encrypted feature. Range: {0, 1, ..., 11} int64 2
onehot_feat5 An encrypted feature. Range: {0, 1, ..., 9} int64 0
onehot_feat6 An encrypted feature. Range: {0, 1, 2} int64 1
onehot_feat7 An encrypted feature. Range: {0, 1, ..., 46} int64 6
onehot_feat8 An encrypted feature. Range: {0, 1, ..., 339} int64 184
onehot_feat9 An encrypted feature. Range: {0, 1, ..., 6} int64 6
onehot_feat10 An encrypted feature. Range: {0, 1, ..., 4} int64 3
onehot_feat11 An encrypted feature. Range: {0, 1, ..., 2} int64 0
onehot_feat12 An encrypted feature. Range: {0, 1} int64 0
onehot_feat13 An encrypted feature. Range: {0, 1} int64 0
onehot_feat14 An encrypted feature. Range: {0, 1} int64 0
onehot_feat15 An encrypted feature. Range: {0, 1} int64 0
onehot_feat16 An encrypted feature. Range: {0, 1} int64 0
onehot_feat17 An encrypted feature. Range: {0, 1} int64 0
Owner
Chongming GAO (高崇铭)
A Ph.D. student at Lab for Data Science, USTC. Research Interests: Recommender Systems.
Chongming GAO (高崇铭)
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023