Implementing yolov4 target detection and tracking based on nao robot

Overview

基于nao机器人实现yolov4目标检测并进行跟踪

Introduction - 介绍

本项目为yolov4算法在nao机器人上的应用。

关于YOLOv4原理请参考YOLOv4原论文
本项目主要YOLOv4框架参考Bubbliiiing博主复现的代码
原博客链接:https://blog.csdn.net/weixin_44791964/article/details/106214657
复现代码链接:https://github.com/bubbliiiing/yolov4-pytorch
nao机器人单目测距方法请参考:https://wenku.baidu.com/view/bdc7eea7482fb4daa48d4b24.html
使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件


下图为目标跟踪流程图。由于nao机器人sdk库naoqi仅支持py2.7环境,本项目需分别运行py2.7环境下的"封装跟踪.py"文件和py3.6环境下的"predict.py"文件。
该项目可以让nao机器人转头寻找水瓶目标,检测到目标后通过单目测距向目标前进,当目标距离和nao小于1.09m时,程序完成运行。 image

Requirements - 必要条件

py2.7环境

numpy==1.16.6+vanilla
opencv-python==2.4.13.7
Pillow==6.2.2
pynaoqi==2.1.4.13

tips

naoqi库为软银官方提供的nao机器人sdk
naoqi库百度云链接:链接: https://pan.baidu.com/s/1kib-Bx9BjiOXCjrIycsIAw 提取码: 5k8b


py3.6环境

pytorch和cuda版本参考Bubbliiiing博文,其他缺少环境任意版本即可。 参考环境见py3.6环境文件(仅供参考,因为包含了很多自用无关的库)

Configuration - 配置

使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件
YOLOv4环境的配置方法:
1.将训练好的只检测水瓶类的权重文件放入model_data文件夹,并替换yolo.py中的初始路径
2.把model_data文件夹下的voc_classes.txt文件中物品类别改为只有bottle
3.更多问题详见Bubbliiiing博文。

本项目跟踪的只有水瓶类,所以训练时只提取了VOC2007数据集中的水瓶类别
只有水瓶类别的VOC2007数据集百度云链接:链接: https://pan.baidu.com/s/1d11f3lm2BvPtwxXuRYZ5HQ 提取码: w2kn
训练好的只检测水瓶类的权重百度云链接: 链接: https://pan.baidu.com/s/1Qt__j8RAOZeRbY8BjXitpA 提取码: 5u2b

Usage - 用法

配置好py3.6和py2.7环境后。先运行"封装跟踪.py"文件,再运行"predict.py"文件。
检测到的图片信息可见于img文件夹

Changelog - 更新日志

License - 版权信息

本项目证书为GPL-3.0 License,详见GPL-3.0 License.md

Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022