Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Overview

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Paper

Description

Recent research has shown that numerous human-interpretable directions exist in the latent space of GANs. In this paper, we develop an automatic procedure for finding directions that lead to foreground-background image separation, and we use these directions to train an image segmentation model without human supervision. Our method is generator-agnostic, producing strong segmentation results with a wide range of different GAN architectures. Furthermore, by leveraging GANs pretrained on large datasets such as ImageNet, we are able to segment images from a range of domains without further training or finetuning. Evaluating our method on image segmentation benchmarks, we compare favorably to prior work while using neither human supervision nor access to the training data. Broadly, our results demonstrate that automatically extracting foreground-background structure from pretrained deep generative models can serve as a remarkably effective substitute for human supervision.

How to run

Dependencies

This code depends on pytorch-pretrained-gans, a repository I developed that exposes a standard interface for a variety of pretrained GANs. Install it with:

pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

The pretrained weights for most GANs are downloaded automatically. For those that are not, I have provided scripts in that repository.

There are also some standard dependencies:

Install them with:

pip install hydra-core==1.1.0dev5 pytorch_lightning albumentations tqdm retry kornia

General Approach

Our unsupervised segmentation approach has two steps: (1) finding a good direction in latent space, and (2) training a segmentation model from data and masks that are generated using this direction.

In detail, this means:

  1. We use optimization/main.py finds a salient direction (or two salient directions) in the latent space of a given pretrained GAN that leads to foreground-background image separation.
  2. We use segmentation/main.py to train a standard segmentation network (a UNet) on generated data. The data can be generated in two ways: (1) you can generate the images on-the-fly during training, or (2) you can generate the images before training the segmentation model using segmentation/generate_and_save.py and then train the segmentation network afterward. The second approach is faster, but requires more disk space (~10GB for 1 million images). We will also provide a pre-generated dataset (coming soon).

Configuration and Logging

We use Hydra for configuration and Weights and Biases for logging. With Hydra, you can specify a config file (found in configs/) with --config-name=myconfig.yaml. You can also override the config from the command line by specifying the overriding arguments (without --). For example, you can enable Weights and Biases with wandb=True and you can name the run with name=myname.

The structure of the configs is as follows:

config
├── data_gen
│   ├── generated.yaml  # <- for generating data with 1 latent direction
│   ├── generated-dual.yaml   # <- for generating data with 2 latent directions
│   ├── generator  # <- different types of GANs for generating data
│   │   ├── bigbigan.yaml
│   │   ├── pretrainedbiggan.yaml
│   │   ├── selfconditionedgan.yaml
│   │   ├── studiogan.yaml
│   │   └── stylegan2.yaml 
│   └── saved.yaml  # <- for using pre-generated data
├── optimize.yaml  # <- for optimization
└── segment.yaml   # <- for segmentation

Code Structure

The code is structured as follows:

src
├── models  # <- segmentation model
│   ├── __init__.py
│   ├── latent_shift_model.py  # <- shifts direction in latent space
│   ├── unet_model.py  # <- segmentation model
│   └── unet_parts.py
├── config  # <- configuration, explained above
│   ├── ... 
├── datasets  # <- classes for loading datasets during segmentation/generation
│   ├── __init__.py
│   ├── gan_dataset.py  # <- for generating dataset
│   ├── saved_gan_dataset.py  # <- for pre-generated dataset
│   └── real_dataset.py  # <- for evaluation datasets (i.e. real images)
├── optimization
│   ├── main.py  # <- main script
│   └── utils.py  # <- helper functions
└── segmentation
    ├── generate_and_save.py  # <- for generating a dataset and saving it to disk
    ├── main.py  # <- main script, uses PyTorch Lightning 
    ├── metrics.py  # <- for mIoU/F-score calculations
    └── utils.py  # <- helper functions

Datasets

The datasets should have the following structure. You can easily add you own datasets or use only a subset of these datasets by modifying config/segment.yaml. You should specify your directory by modifying root in that file on line 19, or by passing data_seg.root=MY_DIR using the command line whenever you call python segmentation/main.py.

├── DUT_OMRON
│   ├── DUT-OMRON-image
│   │   └── ...
│   └── pixelwiseGT-new-PNG
│       └── ...
├── DUTS
│   ├── DUTS-TE
│   │   ├── DUTS-TE-Image
│   │   │   └── ...
│   │   └── DUTS-TE-Mask
│   │       └── ...
│   └── DUTS-TR
│       ├── DUTS-TR-Image
│       │   └── ...
│       └── DUTS-TR-Mask
│           └── ...
├── ECSSD
│   ├── ground_truth_mask
│   │   └── ...
│   └── images
│       └── ...
├── CUB_200_2011
│   ├── train_images
│   │   └── ...
│   ├── train_segmentations
│   │   └── ...
│   ├── test_images
│   │   └── ...
│   └── test_segmentations
│       └── ...
└── Flowers
    ├── train_images
    │   └── ...
    ├── train_segmentations
    │   └── ...
    ├── test_images
    │   └── ...
    └── test_segmentations
        └── ...

The datasets can be downloaded from:

Training

Before training, make sure you understand the general approach (explained above).

Note: All commands are called from within the src directory.

In the example commands below, we use BigBiGAN. You can easily switch out BigBiGAN for another model if you would like to.

Optimization

PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME

This should take less than 5 minutes to run. The output will be saved in outputs/optimization/fixed-BigBiGAN-NAME/DATE/, with the final checkpoint in latest.pth.

Segmentation with precomputed generations

The recommended way of training is to generate the data first and train afterward. An example generation script would be:

PYTHONPATH=. python segmentation/generate_and_save.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.save_dir="YOUR_OUTPUT_DIR" \
data_gen.save_size=1000000 \
data_gen.kwargs.batch_size=1 \
data_gen.kwargs.generation_batch_size=128

This will generate 1 million image-label pairs and save them to YOUR_OUTPUT_DIR/images. Note that YOUR_OUTPUT_DIR should be an absolute path, not a relative one, because Hydra changes the working directory. You may also want to tune the generation_batch_size to maximize GPU utilization on your machine. It takes around 3-4 hours to generate 1 million images on a single V100 GPU.

Once you have generated data, you can train a segmentation model:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=saved \
data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE"

It takes around 3 hours on 1 GPU to complete 18000 iterations, by which point the model has converged (in fact you can probably get away with fewer steps, I would guess around ~5000).

Segmentation with on-the-fly generations

Alternatively, you can generate data while training the segmentation model. An example script would be:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.kwargs.generation_batch_size=128

Evaluation

To evaluate, set the train argument to False. For example:

python train.py \
name="eval" \
train=False \
eval_checkpoint=${checkpoint} \
data_seg.root=${DATASETS_DIR} 

Pretrained models

  • ... are coming soon!

Available GANs

It should be possible to use any GAN from pytorch-pretrained-gans, including:

Citation

@inproceedings{melaskyriazi2021finding,
  author    = {Melas-Kyriazi, Luke and Rupprecht, Christian and Laina, Iro and Vedaldi, Andrea},
  title     = {Finding an Unsupervised Image Segmenter in each of your Deep Generative Models},
  booktitle = arxiv,
  year      = {2021}
}
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

Comments
  • pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    Hi, is the repo in the pytorch-pretrained-gans step public or is that the right URL for it? I got prompted for username and password when I tried the pip install git+ and don't see the repo at that URL: https://github.com/lukemelas/pytorch-pretrained-gans (Get 404)

    Thanks.

    opened by ModMorph 2
  • Help producing results with the StyleGAN models

    Help producing results with the StyleGAN models

    Hi there!

    I'm having trouble producing meaningful results on StyleGAN2 on AFHQ. I've been using the default setup and hyperparameters. After 50 iterations (with the default batch size of 32) I get visualisations that look initially promising: (https://i.imgur.com/eR79Wyd.png). But as training progresses, and indeed when it reaches 300 iterations, these are the visualisation results: https://i.imgur.com/36zhBzT.png.

    I've tried playing with the learning rate, and the number of iterations with no success yet. Did you have tips here or ideas as to what might be going wrong here?

    Thanks! James.

    opened by james-oldfield 1
  • bug

    bug

    Firstly, I ran PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME. And then, I ran PYTHONPATH=. python segmentation/generate_and_save.py \ name=NAME \ data_gen=generated \ data_gen/generator=bigbigan \ data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \ data_gen.save_dir="YOUR_OUTPUT_DIR" \ data_gen.save_size=1000000 \ data_gen.kwargs.batch_size=1 \ data_gen.kwargs.generation_batch_size=128 When I ran PYTHONPATH=. python segmentation/main.py \ name=NAME \ data_gen=saved \ data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE" An error occurred. The error is: Traceback (most recent call last): File "segmentation/main.py", line 98, in main kwargs = dict(images_dir=_cfg.images_dir, labels_dir=_cfg.labels_dir, omegaconf.errors.InterpolationResolutionError: KeyError raised while resolving interpolation: "Environment variable '/raid/name/gaochengli/segmentation/src/images' not found" full_key: data_seg.data[0].images_dir object_type=dict According to what you wrote, I modified the root (config/segment.yaml on line 19). Just like this "/raid/name/gaochengli/segmentation/src/images". And the folder contains all data sets,whose name is images. I wonder why such a mistake happened.

    opened by Lee-Gao 1
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022