BASH - Biomechanical Animated Skinned Human

Overview

BASH - Biomechanical Animated Skinned Human

BASH Teaser

Schleicher, R., Nitschke, M., Martschinke, J., Stamminger, M., Eskofier, B., Klucken, J., Koelewijn, A. (2021). BASH: Biomechanical Animated Skinned Human for Visualization of Kinematics and Muscle Activity. 16th International Conference on Computer Graphics Theory and Applications (GRAPP), 2021.

https://www.scitepress.org/Papers/2021/102106/102106.pdf

BASH Model

Converting a OpenSim [1] format file (.osim + .mot) to the SCAPE [2] framework. Visualization tool to inspect the animated model in 3D.

Processing Pipeline

Input Model: OpenSim

  • Parser
  • Model (.osim)
  • Scale factors (.xml)
  • Motion (.mot)
  • Muscle Activation (.sto)

Baseline model Design for a new Musculoskeltal Model (in Blender)

  • modeling
  • import SCAPE mesh
  • rig and skin skeleton (same hierarchy as musucloskeletal model)
  • place markers (same set as musculoskeletal model)
  • export model (.dae reorders vertices...) => mesh, markers & weights files

Scaling

  • performed automatically, applied correctly to the hierachy, applied in bone space
  • use .xml file or my estimation (defined in settings.h)
  • scaled vs generic in ./data/cache/mesh/

Initial Pose Matching

  • computed automatically using OpenSim's IK solver
  • cached in ./data/cache/mapping for debugging the resulting .mot file

Pose Transformation

  • calculated beforehand (needed the mesh for projection to SCAPE)
  • uses pose mapping projection and kinematic transformations, applied in world space
  • cached in ./data/cache/mesh/

Projection into SCAPE space

  • projection to scape space (only relative rotations)
  • rigid alignment to adjust translation
  • cached in ./data/cache/mesh/

Visualization of Muscle Activation

  • computed at run-time
  • color coding in Fragment Shader

Settings

  • settings.h for keyshortcuts, constants and other configurations

Project structure and dependencies

  • SCAPE: The main Windows-Application that handles the model conversion and visualization

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • Assimp (>= 3.0.0)

  • OpenSim and SimbodyTK (>= 4.0)

  • libRender: A custom framework used for creating a window and render a 3D-application in it

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • libSCAPE: The SCAPE framework to load the SCAPE binary data and create a mesh in pose and shape

  • External dependencies (minimum required version):

  • SuitSparse package: suitsparse + amd + umfpack (>= 5.1.2)

  • GSL (>= 2.4)

SCAPE Framework

  • Implementation in ´SCAPE.h´
  • Model parameters
  • Pose: Rotation vector for each part ('numParts = 16') in three-dimensional twist subvectors (the axis is determined by the vector's direction and the angle is determined by the vector's magnitude.
  • Shape: Scalar PCA coefficients ('numVecs = 20') to modify body proportions like height, size and gender etc.

Building platform x64

  • OpenSim can only be built in 64bit. So we have to use the x64 Platform in order to use their API.
  • Include and link all dependencies in x64.
  • Build the SCAPE framework in x64.
  • Define the flag '#define SAVE_MATRIX 0' once to write new binaries in the correct format (64bit wording).
  • The folder 'data\default_scape_data' should contain the binary files: 'matrixDGrad.bin', 'SCAPE_DGrad_numeric.bin', 'SCAPE_DGrad_symbolic.bin', 'SCAPE_pose.bin'.

Example result

OpenSim's visualization compared to our visualization (data set: straight running [3]): Example

References

[1] Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia,C. L., Dunne, J. J., Ong, C. F., DeMers, M. S., Ra-jagopal, A., Millard, M., et al. (2018). OpenSim: Sim-ulating musculoskeletal dynamics and neuromuscularcontrol to study human and animal movement. PLoSComputational Biology, 14(7):1–20.

[2] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers,J., and Davis, J. (2005). SCAPE: Shape Completionand Animation of People. InACM Transactions onGraphics, volume 24, pages 408–416.

[3] Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B. M., Koelewijn, A. D., and Van den Bogert, A. J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics. Scientific Reports, 10(17655).

Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022