This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Overview

Amortized Assimilation

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the time the forecast is initialized. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce effective estimation schemes. We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations with no need for ground truth data. We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.

Installation

Requirements

This code can be memory heavy as each experiment unrolls at least 40 assimilation steps (which from a memory perspective is equivalent to a 40x deeper network plus whatever is needed for the simulation). Current settings are optimized to max out memory usage on a GTX1070 GPU. The easiest ways to tune memory usage are network width and ensemble size. Checkpointing could significantly improve memory utilization but is not currently implemented.

To install the dependencies, use the provided requirements.txt file:

pip install -r requirements.txt 

There is also a dependency on torchdiffeq. Instructions for installing torchdiffeq can be found at https://github.com/rtqichen/torchdiffeq, but are also copied below:

pip install git+https://github.com/rtqichen/torchdiffeq

To run the DA comparison models, you will need to install DAPPER. Instructions can be found here: https://github.com/nansencenter/DAPPER.

Installing this package

A setup.py file has been included for installation. Navigate to the home folder and run:

pip install -e . 

Run experiments

All experiments can be run from experiments/run_*.py. Default settings are those used in the paper. First navigate to the experiments directory then execute:

L96 Full Observations

python run_L96Conv.py --obs_conf full_obs

L96 Partial Observations (every fourth).

python run_L96Conv.py --obs_conf every_4th_dim_partial_obs

VL20 Partial

python run_VLConv.py --obs_conf every_4th_dim_partial_obs

KS Full

python run_KS.py 

Other modifications of interest might be to adjust the step size for the integrator (--step_size, default .1), observation error(--noise, default 1.), ensemble size (--m, default 10), or network width (--hidden_size, default 64 for conv). The L96 code also includes options for self-supervised and supervised analysis losses (ss_analysis, clean_analysis) used for creating Figure 6 from the paper. Custom observation operators can be created in the same style as those found in obs_configs.py.

Parameters for traditional DA approaches were tuned via grid search over smaller sequences. Those hyperparameters were then used for longer assimilation sequences.

To test a new architecture, you'll want to ensure it's obeying the same API as the models in models.py, but otherwise it should slot in without major issues.

Datasets

Code is included for generating the Lorenz 96, VL 20 and KS datasets. This can be found under amortized_assimilation/data_utils.py

References

DAPPER: Raanes, P. N., & others. (2018). nansencenter/DAPPER: Version 0.8. https://doi.org/10.5281/zenodo.2029296

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1835825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


If you found the code or ideas in this repository useful, please consider citing:

@article{mccabe2021l2assim,
  title={Learning to Assimilate in Chaotic Dynamical Systems},
  author={McCabe, Michael and Brown, Jed},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022