[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Overview

Learning to Compose Visual Relations

This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations.

Demo

Image Generation Demo

Please use the following command to generate images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode generation
GIF Final Generated Image

Image Editing Demo

Please use the following command to edit images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing
Input Image GIF Final Edited Image

Training

Data Preparation

Please utilize the following data link to download the CLEVR data utilized in our experiments. Then place all data files under ./data folder. Downloads for additional datasets and precomputed feature files will be posted soon. Feel free to raise an issue if there is a particular dataset you would like to download.

Model Training

To train your own model, please run following command. Please use --dataset to train your model on different datasets, e.g. --dataset clevr.

python -u train.py --cond --dataset=${dataset} --exp=${dataset} --batch_size=10 --step_lr=300 \
--num_steps=60 --kl --gpus=1 --nodes=1 --filter_dim=128 --im_size=128 --self_attn \
--multiscale --norm --spec_norm --slurm --lr=1e-4 --cuda --replay_batch \
--numpy_data_path ./data/clevr_training_data.npz

Evaluation

To evaluate our model, you can use your own trained models or download the pre-trained models model_best.pth from ${dataset}_model folder from link and put it under the project folder ./checkpoints/${dataset}. Only clevr_model is currently available. More pretrained-models will be posted soon.

Evaluate Image Generation Results Using the Pretrained Classifiers

Please use the following command to generate images on the test set first. Please use --dataset and --num_rels to control the dataset and the number of input relational descriptions. Note that 1 <= num_rels <= 3.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_gen_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels ${num_rels} --data_folder ./data --mode generation

In order to evaluate the binary classification scores of the generated images, you can train one binary classifier or download a pretrained one from link under the binary_classifier folder.

To train your own binary classifier, please use following command:

python train_classifier.py --train --spec_norm --norm \
--dataset ${dataset} --lr 3e-4 --checkpoint_dir ./binary_classifier

Please use following command to evaluate on generated images conditioned on selected number of relations. Please use --num_rels to specify the number of relations.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_gen_images/num_rels_${num_rels} \
--mode generation --num_rels ${num_rels}

Evaluate Image Editing Results Using the Pretrained Classifiers

Please use the following command to edit images on the test set first. Please use --dataset and --num_rels to select the dataset and the number of input relational descriptions.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_edit_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing

To evaluate classification scores of image editing results, please change the --mode to editing.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_edit_images/num_rels_${num_rels} \
--mode editing --num_rels ${num_rels}

Acknowledgements

The code for training EBMs is from https://github.com/yilundu/improved_contrastive_divergence.


Citation

Please consider citing our papers if you use this code in your research:

@article{liu2021learning,
  title={Learning to Compose Visual Relations},
  author={Liu, Nan and Li, Shuang and Du, Yilun and Tenenbaum, Josh and Torralba, Antonio},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Nan Liu
MS CS @uiuc; BS CS @umich
Nan Liu
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022