Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Related tags

Deep Learningnglod
Overview

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces

Official code release for NGLOD. For technical details, please refer to:

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces
Towaki Takikawa*, Joey Litalien*, Kangxue Xin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler
In Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)
[Paper] [Bibtex] [Project Page]

If you find this code useful, please consider citing:

@article{takikawa2021nglod,
    title = {Neural Geometric Level of Detail: Real-time Rendering with Implicit {3D} Shapes}, 
    author = {Towaki Takikawa and
              Joey Litalien and 
              Kangxue Yin and 
              Karsten Kreis and 
              Charles Loop and 
              Derek Nowrouzezahrai and 
              Alec Jacobson and 
              Morgan McGuire and 
              Sanja Fidler},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}

New: Sparse training code with Kaolin now available in app/spc! Read more about it here

Directory Structure

sol-renderer contains our real-time rendering code.

sdf-net contains our training code.

Within sdf-net:

sdf-net/lib contains all of our core codebase.

sdf-net/app contains standalone applications that users can run.

Getting started

Python dependencies

The easiest way to get started is to create a virtual Python 3.8 environment:

conda create -n nglod python=3.8
conda activate nglod
pip install --upgrade pip
pip install -r ./infra/requirements.txt

The code also relies on OpenEXR, which requires a system library:

sudo apt install libopenexr-dev 
pip install pyexr

To see the full list of dependencies, see the requirements.

Building CUDA extensions

To build the corresponding CUDA kernels, run:

cd sdf-net/lib/extensions
chmod +x build_ext.sh && ./build_ext.sh

The above instructions were tested on Ubuntu 18.04/20.04 with CUDA 10.2/11.1.

Training & Rendering

Note. All following commands should be ran within the sdf-net directory.

Download sample data

To download a cool armadillo:

wget https://raw.githubusercontent.com/alecjacobson/common-3d-test-models/master/data/armadillo.obj -P data/

To download a cool matcap file:

wget https://raw.githubusercontent.com/nidorx/matcaps/master/1024/6E8C48_B8CDA7_344018_A8BC94.png -O data/matcap/green.png

Training from scratch

python app/main.py \
    --net OctreeSDF \
    --num-lods 5 \
    --dataset-path data/armadillo.obj \
    --epoch 250 \
    --exp-name armadillo

This will populate _results with TensorBoard logs.

Rendering the trained model

If you set custom network parameters in training, you need to also reflect them for the renderer.

For example, if you set --feature-dim 16 above, you need to set it here too.

python app/sdf_renderer.py \
    --net OctreeSDF \
    --num-lods 5 \
    --pretrained _results/models/armadillo.pth \
    --render-res 1280 720 \
    --shading-mode matcap \
    --lod 4

By default, this will populate _results with the rendered image.

If you want to export a .npz model which can be loaded into the C++ real-time renderer, add the argument --export path/file.npz. Note that the renderer only supports the base Neural LOD configuration (the default parameters with OctreeSDF).

Core Library Development Guide

To add new functionality, you will likely want to make edits to the files in lib.

We try our best to keep our code modular, such that key components such as trainer.py and renderer.py need not be modified very frequently to add new functionalities.

To add a new network architecture for an example, you can simply add a new Python file in lib/models that inherits from a base class of choice. You will probably only need to implement the sdf method which implements the forward pass, but you have the option to override other methods as needed if more custom operations are needed.

By default, the loss function used are defined in a CLI argument, which the code will automatically parse and iterate through each loss function. The network architecture class is similarly defined in the CLI argument; simply use the exact class name, and don't forget to add a line in __init__.py to resolve the namespace.

App Development Guide

To make apps that use the core library, add the sdf-net directory into the Python sys.path, so the modules can be loaded correctly. Then, you will likely want to inherit the same CLI parser defined in lib/options.py to save time. You can then add a new argument group app to the parser to add custom CLI arguments to be used in conjunction with the defaults. See app/sdf_renderer.py for an example.

Examples of things that are considered apps include, but are not limited to:

  • visualizers
  • training code
  • downstream applications

Third-Party Libraries

This code includes code derived from 3 third-party libraries, all distributed under the MIT License:

https://github.com/zekunhao1995/DualSDF

https://github.com/rogersce/cnpy

https://github.com/krrish94/nerf-pytorch

Acknowledgements

We would like to thank Jean-Francois Lafleche, Peter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and Alex Bie at NVIDIA for interesting discussions throughout the project. We also thank Peter Shirley, Alexander Majercik, Jacob Munkberg, David Luebke, Jonah Philion and Jun Gao for their help with paper editing.

We also thank Clement Fuji Tsang for his help with the code release.

The structure of this repo was inspired by PIFu: https://github.com/shunsukesaito/PIFu

基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023