Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Related tags

Deep Learningnglod
Overview

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces

Official code release for NGLOD. For technical details, please refer to:

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces
Towaki Takikawa*, Joey Litalien*, Kangxue Xin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler
In Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)
[Paper] [Bibtex] [Project Page]

If you find this code useful, please consider citing:

@article{takikawa2021nglod,
    title = {Neural Geometric Level of Detail: Real-time Rendering with Implicit {3D} Shapes}, 
    author = {Towaki Takikawa and
              Joey Litalien and 
              Kangxue Yin and 
              Karsten Kreis and 
              Charles Loop and 
              Derek Nowrouzezahrai and 
              Alec Jacobson and 
              Morgan McGuire and 
              Sanja Fidler},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}

New: Sparse training code with Kaolin now available in app/spc! Read more about it here

Directory Structure

sol-renderer contains our real-time rendering code.

sdf-net contains our training code.

Within sdf-net:

sdf-net/lib contains all of our core codebase.

sdf-net/app contains standalone applications that users can run.

Getting started

Python dependencies

The easiest way to get started is to create a virtual Python 3.8 environment:

conda create -n nglod python=3.8
conda activate nglod
pip install --upgrade pip
pip install -r ./infra/requirements.txt

The code also relies on OpenEXR, which requires a system library:

sudo apt install libopenexr-dev 
pip install pyexr

To see the full list of dependencies, see the requirements.

Building CUDA extensions

To build the corresponding CUDA kernels, run:

cd sdf-net/lib/extensions
chmod +x build_ext.sh && ./build_ext.sh

The above instructions were tested on Ubuntu 18.04/20.04 with CUDA 10.2/11.1.

Training & Rendering

Note. All following commands should be ran within the sdf-net directory.

Download sample data

To download a cool armadillo:

wget https://raw.githubusercontent.com/alecjacobson/common-3d-test-models/master/data/armadillo.obj -P data/

To download a cool matcap file:

wget https://raw.githubusercontent.com/nidorx/matcaps/master/1024/6E8C48_B8CDA7_344018_A8BC94.png -O data/matcap/green.png

Training from scratch

python app/main.py \
    --net OctreeSDF \
    --num-lods 5 \
    --dataset-path data/armadillo.obj \
    --epoch 250 \
    --exp-name armadillo

This will populate _results with TensorBoard logs.

Rendering the trained model

If you set custom network parameters in training, you need to also reflect them for the renderer.

For example, if you set --feature-dim 16 above, you need to set it here too.

python app/sdf_renderer.py \
    --net OctreeSDF \
    --num-lods 5 \
    --pretrained _results/models/armadillo.pth \
    --render-res 1280 720 \
    --shading-mode matcap \
    --lod 4

By default, this will populate _results with the rendered image.

If you want to export a .npz model which can be loaded into the C++ real-time renderer, add the argument --export path/file.npz. Note that the renderer only supports the base Neural LOD configuration (the default parameters with OctreeSDF).

Core Library Development Guide

To add new functionality, you will likely want to make edits to the files in lib.

We try our best to keep our code modular, such that key components such as trainer.py and renderer.py need not be modified very frequently to add new functionalities.

To add a new network architecture for an example, you can simply add a new Python file in lib/models that inherits from a base class of choice. You will probably only need to implement the sdf method which implements the forward pass, but you have the option to override other methods as needed if more custom operations are needed.

By default, the loss function used are defined in a CLI argument, which the code will automatically parse and iterate through each loss function. The network architecture class is similarly defined in the CLI argument; simply use the exact class name, and don't forget to add a line in __init__.py to resolve the namespace.

App Development Guide

To make apps that use the core library, add the sdf-net directory into the Python sys.path, so the modules can be loaded correctly. Then, you will likely want to inherit the same CLI parser defined in lib/options.py to save time. You can then add a new argument group app to the parser to add custom CLI arguments to be used in conjunction with the defaults. See app/sdf_renderer.py for an example.

Examples of things that are considered apps include, but are not limited to:

  • visualizers
  • training code
  • downstream applications

Third-Party Libraries

This code includes code derived from 3 third-party libraries, all distributed under the MIT License:

https://github.com/zekunhao1995/DualSDF

https://github.com/rogersce/cnpy

https://github.com/krrish94/nerf-pytorch

Acknowledgements

We would like to thank Jean-Francois Lafleche, Peter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and Alex Bie at NVIDIA for interesting discussions throughout the project. We also thank Peter Shirley, Alexander Majercik, Jacob Munkberg, David Luebke, Jonah Philion and Jun Gao for their help with paper editing.

We also thank Clement Fuji Tsang for his help with the code release.

The structure of this repo was inspired by PIFu: https://github.com/shunsukesaito/PIFu

Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022