Benchmarks for the Optimal Power Flow Problem

Overview

Power Grid Lib - Optimal Power Flow

This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms and is designed to evaluate a well established version of the the AC Optimal Power Flow problem. This introductory video and detailed report present the motivations and goals of this benchmark library. In particular, these cases are designed for benchmarking algorithms that solve the following Non-Convex Nonlinear Program,

  The Mathematical Model of the Optimal Power Flow Problem  

A detailed description of this mathematical model is available here. All of the cases files are curated in the MATPOWER data format. Open-source reference implementations are available in MATPOWER and PowerModels.jl and baseline results are reported in BASELINE.md.

Problem Variants

These cases may also be useful for benchmarking the following variants of the Optimal Power Flow problem,

  • DC Optimal Power Flow
  • AC Optimal Transmission Switching
  • DC Optimal Transmission Switching

That said, these cases are curated with the AC Optimal Power Flow problem in mind. Application to other domains and problem variants should be done with discretion.

Case File Overview

A forthcoming technical report will detail the sources, motivations, and procedures for curating these case files.

In this repository the network data files are organized into the following three broad groups:

  • /*.m - base case benchmarks as originally specified
  • /api/*.m - heavily loaded test cases (i.e. binding thermal limit constraints)
  • /sad/*.m - small phase angle difference cases (i.e. binding phase angle difference constraints)

Contributions

All case files are provided under a Creative Commons Attribution License, which allows anyone to share or adapt these cases as long as they give appropriate credit to the orginal author, provide a link to the license, and indicate if changes were made.

Community-based recommendations and contributions are welcome and encouraged in all PGLib repositories. Please feel free to submit comments and questions in the issue tracker. Corrections and new network contributions are welcome via pull requests. All data contributions are subject to a quality assurance review by the repository curator(s).

Citation Guidelines

This repository is not static. Consequently, it is critically important to indicate the version number when referencing this repository in scholarly work.

Users of this these cases are encouraged to cite the original source documents that are indicated in the file headers and the achrive report.

Comments
  • DC Baselines, Constraints, and Inf

    DC Baselines, Constraints, and Inf

    Hello, I have some related questions about the DC OPF baselines.

    1. It seems that for many of the typical operating conditions, the DC approximation better minimizes the cost than the full AC solution. Is this expected? Does this factor in any constraint violations?

    2. In some of the small angle difference cases, the objective values for the DC approximation are listed as "Inf". Does that indicate a constraint violation?

    opened by ElPiloto 5
  • radial test cases

    radial test cases

    It seems none of the test cases in pglib-opf are radial? That makes it hard to use any of these benchmarks to use/extend them for models that require a consistent definition of upstream/downstream, e.g. as in [1] below.

    I recall that the NESTA archive had a /rad m file collection. Was there any discussion on including that in pglib-opf? What happened to it?

    [1] Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2020). Differentially Private Optimal Power Flow for Distribution Grids, 1, 1–9. Retrieved from http://arxiv.org/abs/2004.03921

    opened by frederikgeth 5
  • Help In SDP-Relaxation method for solving OPF Problem

    Help In SDP-Relaxation method for solving OPF Problem

    Hello Sir, i came to know about you from your videos of Convex Relaxations in Youtube... Sir i need help from you, i am stuck in my project work....i am trying to find an optimze a system 3m9b for test....

    and i wrote the optimization problem like this.... for i=1:1 cvx_begin cvx_solver sedumi

    variables u(npv,1) variable W(2n,2n) symmetric summ=trace(YYreal(:,:,1)*W); for i=2:n summ=summ+trace(YYreal(:,:,i)*W); end for i=1:npv u(i,1)==trace(YYreal(:,:,i+npq)W);
    (This u contais the PV buses active power generation...(whose optimal value has to be found)) end minimize(w
    (sum(u)+trace(YYreal(:,:,n)*W)))

    subject to for i=1:npq (this are equality constraints "calculated active power=specified active power" for pv&pq buses) trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; end for i=1:npv (this bounds i thought to apply after getting a local optimal solution from Newtons Method) trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)>=-0.2 trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)<=3 end

    for i=1:npq (this are equality constraints "calculated reactive power=specified reactive power" for only pq buses) trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; end

    W==semidefinite(2*n); W>=0; cvx_end w=w+1 for i=1:npv Pg(i+npq,1)=trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1); end end

    Sir, in the paper it is "Zero Duality Gap In Optimal Power Flow" that rank of W matrix variable should come=1 when the duality gap is "0". and for that we applied weight method.(w is the weight)..

    Sir.. for some values of w i get solution as 'NAN'. and for some i get an optimal solution...but the 'W matrix' never comes of rank 1...

    i dont know where i am going wrong...but please help me with this....

    opened by 12146 1
  • Line limits units (`rateA`)

    Line limits units (`rateA`)

    Hi, first, thanks for your work aggregating and building this library!

    I'm trying to use the 1354pegase case and am implementing my own simplified opf model where I want to impose line current constraints for line l = (i,j) according to

    (|y_ij| |V_i - V_j|)^2 <= rhs
    

    for V_i, V_j the complex voltages at buses i and j and |y_ij| is the magnitude of the (i,j) element of the admittance matrix. (Btw, I'm ignoring tap adjustments now...)

    However, I'm not sure what the units of the rhs should be from the pglib case. According to Table V of the report (https://arxiv.org/abs/1908.02788), it seems that rateA is a thermal limit that was determined by the TL-UB method from Section V.B.2. Does this mean that the rateA is already normalized by baseMVA and given in p.u. form? Or should I divide rateA by 100 to get the p.u. (and then square it to set the value of the rhs).

    Thanks!

    opened by jacob-roth 1
  • Tranformer Parameter Checks

    Tranformer Parameter Checks

    In some cases all tap settings are 1.0, I check should be made so that this only occurs when the value is not 1.0 or the branch is connecting two voltage levels.

    opened by ccoffrin 1
  • Inverted Generator Bounds

    Inverted Generator Bounds

    Some inactive generators have infeasible active power bounds (i.e. pmax < pmin). Resolve this by ensuring,

    pmin = min(pmin,pmax)
    pmax = min(pmin,pmax)
    

    in all generators.

    opened by ccoffrin 0
  • Generator LB higher than UB in 1888_rte__api

    Generator LB higher than UB in 1888_rte__api

    In pglib_opf_case1888_rte__api.m, the real power lower bound for the generator at bus 1689 (line 2,044 of the `.m' file) is 280.0, but the upper bound has been modified to be 64 (from 930 in the original case). Is this intentional? If so, what does it mean if the generator is turned on?

    Thank you for your help!

    opened by emma58 2
  • Error when solving case89_pegase__api and case240_pserc__api

    Error when solving case89_pegase__api and case240_pserc__api

    Hello,

    I got the following error when solving OPF for 2 test cases: case89_pegase__api and case240_pserc__api with the MATPOWER function runopf. It seems that there is a problem when generator bound Pmax is 0.

    Error using makeAvl (line 52) makeAvl: either Qmin or Qmax must be equal to zero for each dispatchable load.

    Error in opf_setup (line 171) [Avl, lvl, uvl] = makeAvl(baseMVA, gen);

    Error in opf (line 198) om = opf_setup(mpc, mpopt);

    Error in runopf (line 75) [r, success] = opf(casedata, mpopt);

    Best regards,

    Christian

    opened by cbingane 7
  • Add 68-Bus System

    Add 68-Bus System

    Explore the possibility of including a network derived from the 68-Bus, 16-Machine, 5-Area Dynamic Test System.

    Related Links:

    • http://sites.ieee.org/pes-psdp/benchmark-systems-2/
    • https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
    • http://icseg.iti.illinois.edu/new-england-68-bus-test-system/
    • http://sites.ieee.org/pes-resource-center/files/2015/08/PES_TR18_Benchmark-Systems-for-Small-Signal-Stability-Analysis-and-Control.pdf
    • http://www.sel.eesc.usp.br/ieee/NETS68/New_England_New_York_68_Bus_System_study_report.pdf
    opened by ccoffrin 0
Releases(v21.07)
Owner
A Library of IEEE PES Power Grid Benchmarks
A Library of IEEE PES Power Grid Benchmarks
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022