PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Related tags

Deep LearningPClean
Overview

PClean

Build Status

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Warning: This is a rapidly evolving research prototype.

PClean was created at the MIT Probabilistic Computing Project.

If you use PClean in your research, please cite the our 2021 AISTATS paper:

PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. Lew, A. K.; Agrawal, M.; Sontag, D.; and Mansinghka, V. K. (2021, March). In International Conference on Artificial Intelligence and Statistics (pp. 1927-1935). PMLR. (pdf)

Using PClean

To use PClean, create a Julia file with the following structure:

using PClean
using DataFrames: DataFrame
import CSV

# Load data
data = CSV.File(filepath) |> DataFrame

# Define PClean model
PClean.@model MyModel begin
    @class ClassName1 begin
        ...
    end

    ...
    
    @class ClassNameN begin
        ...
    end
end

# Align column names of CSV with variables in the model.
# Format is ColumnName CleanVariable DirtyVariable, or, if
# there is no corruption for a certain variable, one can omit
# the DirtyVariable.
query = @query MyModel.ClassNameN [
  HospitalName hosp.name             observed_hosp_name
  Condition    metric.condition.desc observed_condition
  ...
]

# Configure observed dataset
observations = [ObservedDataset(query, data)]

# Configuration
config = PClean.InferenceConfig(1, 2; use_mh_instead_of_pg=true)

# SMC initialization
state = initialize_trace(observations, config)

# Rejuvenation sweeps
run_inference!(state, config)

# Evaluate accuracy, if ground truth is available
ground_truth = CSV.File(filepath) |> CSV.DataFrame
results = evaluate_accuracy(data, ground_truth, state, query)

# Can print results.f1, results.precision, results.accuracy, etc.
println(results)

# Even without ground truth, can save the entire latent database to CSV files:
PClean.save_results(dir, dataset_name, state, observations)

Then, from this directory, run the Julia file.

JULIA_PROJECT=. julia my_file.jl

To learn to write a PClean model, see our paper, but note the surface syntax changes described below.

Differences from the paper

As a DSL embedded into Julia, our implementation of the PClean language has some differences, in terms of surface syntax, from the stand-alone syntax presented in our paper:

(1) Instead of latent class C ... end, we write @class C begin ... end.

(2) Instead of subproblem begin ... end, inference hints are given using ordinary Julia begin ... end blocks.

(3) Instead of parameter x ~ d(...), we use @learned x :: D{...}. The set of distributions D for parameters is somewhat restricted.

(4) Instead of x ~ d(...) preferring E, we write x ~ d(..., E).

(5) Instead of observe x as y, ... from C, write @query ModelName.C [x y; ...]. Clauses of the form x z y are also allowed, and tell PClean that the model variable C.z represents a clean version of x, whose observed (dirty) version is modeled as C.y. This is used when automatically reconstructing a clean, flat dataset.

The names of built-in distributions may also be different, e.g. AddTypos instead of typos, and ProportionsParameter instead of dirichlet.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
571 Dec 25, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022