Grover is a model for Neural Fake News -- both generation and detectio

Overview

Grover

UPDATE, Sept 17 2019. We got into NeurIPS (camera ready coming soon!) and we've made Grover-Mega publicly available without you needing to fill out the form. You can download it using download_model.py.

(aka, code for Defending Against Neural Fake News)

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Visit our project page at rowanzellers.com/grover, the AI2 online demo, or read the full paper at arxiv.org/abs/1905.12616.

teaser

What's in this repo?

We are releasing the following:

  • Code for the Grover generator (in lm/). This involves training the model as a language model across fields.
  • Code for the Grover discriminator in discrimination/. Without much changing, you can run Grover as a discriminator to detect Neural Fake News.
  • Code for generating from a Grover model, in sample/.
  • Code for making your own RealNews dataset in realnews/.
  • Model checkpoints freely available online for all of the Grover models. For using the RealNews dataset for research, please submit this form and message me on contact me on Twitter or through email. You will need to use a valid account that has google cloud enabled, otherwise, I won't be able to give you access ЁЯШв

Scroll down ЁЯСЗ for some easy-to-use instructions for setting up Grover to generate news articles.

Setting up your environment

NOTE: If you just care about making your own RealNews dataset, you will need to set up your environment separately just for that, using an AWS machine (see realnews/.)

There are a few ways you can run Grover:

  • Generation mode (inference). This requires a GPU because I wasn't able to get top-p sampling, or caching of transformer hidden states, to work on a TPU.
  • LM Validation mode (perplexity). This could be run on a GPU or a TPU, but I've only tested this with TPU inference.
  • LM Training mode. This requires a large TPU pod.
  • Discrimination mode (training). This requires a TPU pod.
  • Discrimination mode (inference). This could be run on a GPU or a TPU, but I've only tested this with TPU inference.

NOTE: You might be able to get things to work using different hardware. However, it might be a lot of work engineering wise and I don't recommend it if possible. Please don't contact me with requests like this, as there's not much help I can give you.

I used Python3.6 for everything. Usually I set it up using the following commands:

curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh  && \
     chmod +x ~/miniconda.sh && \
     ~/miniconda.sh -b -p ~/conda && \
     rm ~/miniconda.sh && \
     ~/conda/bin/conda install -y python=3.6

Then pip install -r requirements-gpu.txt if you're installing on a GPU, or pip install requirements-tpu.txt for TPU.

Misc notes/tips:

  • If you have a lot of projects on your machine, you might want to use an anaconda environment to handle them all. Use conda create -n grover python=3.6 to create an environment named grover. To enter the environment use source activate grover. To leave use source deactivate.
  • I'm using tensorflow 1.13.1 which requires Cuda 10.0. You'll need to install that from the nvidia website. I usually install it into /usr/local/cuda-10.0/, so you will need to run export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64 so tensorflow knows where to find it.
  • I always have my pythonpath as the root directory. While in the grover directory, run export PYTHONPATH=$(pwd) to set it.

Quickstart: setting up Grover for generation!

  1. Set up your environment. Here's the easy way, assuming anaconda is installed: conda create -y -n grover python=3.6 && source activate grover && pip install -r requirements-gpu.txt
  2. Download the model using python download_model.py base
  3. Now generate: PYTHONPATH=$(pwd) python sample/contextual_generate.py -model_config_fn lm/configs/base.json -model_ckpt models/base/model.ckpt -metadata_fn sample/april2019_set_mini.jsonl -out_fn april2019_set_mini_out.jsonl

Congrats! You can view the generations, conditioned on the domain/headline/date/authors, in april2019_set_mini_out.jsonl.

FAQ: What's the deal with the release of Grover?

Our core position is that it is important to release possibly-dangerous models to researchers. At the same time, we believe Grover-Mega isn't particularly useful to anyone who isn't doing research in this area, particularly as we have an online web demo available and the model is computationally expensive. We previously were a bit stricter and limited initial use of Grover-Mega to researchers. Now that several months have passed since we put the paper on arxiv, and since several other large-scale language models have been publicly released, we figured that there is little harm in fully releasing Grover-Mega.

Bibtex

@inproceedings{zellers2019grover,
    title={Defending Against Neural Fake News},
    author={Zellers, Rowan and Holtzman, Ari and Rashkin, Hannah and Bisk, Yonatan and Farhadi, Ali and Roesner, Franziska and Choi, Yejin},
    booktitle={Advances in Neural Information Processing Systems 32},
    year={2019}
}
Owner
Rowan Zellers
Rowan Zellers
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Voil├а turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voil├а turns Jupyter notebooks into standalone web applications. Unlike the

Voil├а Dashboards 4.5k Jan 03, 2023
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnolog├нas del Lenguaje" (Plan-TL).

Spanish Language Models ЁЯТГЁЯП╗ Corpora ЁЯУГ Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models ЁЯдЦ RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paperя╝ЪAn End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
рдорд░рд╛рдареА рднрд╛рд╖рд╛ рд╡рд╛рдЪрд╡рд┐рдгреНрдпрд╛рдЪрд╛ рдПрдХ рдкреНрд░рдпрд╛рд╕. рдЗрдВрдЧреНрд░рдЬреА рддреЗ рдорд░рд╛рдареАрдЪрд╛ рд╢рдмреНрджрдХреЛрд╢. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down рдорд░рд╛рдареА рд╢рдмреНрдж рдорд░рд╛рдареА рднрд╛рд╖рд╛ рд╡рд╛рдЪрд╡рдгреНрдпрд╛рд╕рд╛рдареА рдореА рд╣рд╛ рдУрдкрди рд╕реЛрд░реНрд╕ рдкреНрд░реЛрдЬреЗрдХреНрдЯ рд╕реБрд░реВ рдХреЗрд▓рд╛ рдЖрд╣реЗ. рдорд╛рдЭреНрдпрд╛ рдорддреЗ, рдЖрдкрд▓реА рднрд╛рд╖рд╛ рд╣рд│реВрд╣рд│реВ рдЖрдгрд┐ рдХреЛрдгрд╛рдЪрд╛рд╣реА рд▓рдХреНрд╖рд╛рдд

рдореБрдХреНрдд рд╕реНрддреНрд░реЛрдд 20 Oct 11, 2022